Article

Pathological α-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice.

Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-4283, USA.
Science (Impact Factor: 31.48). 11/2012; 338(6109):949-53. DOI: 10.1126/science.1227157
Source: PubMed

ABSTRACT Parkinson's disease is characterized by abundant α-synuclein (α-Syn) neuronal inclusions, known as Lewy bodies and Lewy neurites, and the massive loss of midbrain dopamine neurons. However, a cause-and-effect relationship between Lewy inclusion formation and neurodegeneration remains unclear. Here, we found that in wild-type nontransgenic mice, a single intrastriatal inoculation of synthetic α-Syn fibrils led to the cell-to-cell transmission of pathologic α-Syn and Parkinson's-like Lewy pathology in anatomically interconnected regions. Lewy pathology accumulation resulted in progressive loss of dopamine neurons in the substantia nigra pars compacta, but not in the adjacent ventral tegmental area, and was accompanied by reduced dopamine levels culminating in motor deficits. This recapitulation of a neurodegenerative cascade thus establishes a mechanistic link between transmission of pathologic α-Syn and the cardinal features of Parkinson's disease.

0 Bookmarks
 · 
271 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous disorders of the central nervous system (CNS) are attributed to the selective death of distinct neuronal cell populations. Interestingly, in many of these conditions, a specific subset of neurons is extremely prone to degeneration while other, very similar neurons are less affected or even spared for many years. In Parkinson's disease (PD), the motor manifestations are primarily linked to the selective, progressive loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc). In contrast, the very similar DA neurons in the ventral tegmental area (VTA) demonstrate a much lower degree of degeneration. Elucidating the molecular mechanisms underlying the phenomenon of differential DA vulnerability in PD has proven extremely challenging. Moreover, an increasing number of studies demonstrate that considerable molecular and electrophysiologic heterogeneity exists among the DA neurons within the SNpc as well as those within the VTA, adding yet another layer of complexity to the selective DA vulnerability observed in PD. The discovery of key pathways that regulate this differential susceptibility of DA neurons to degeneration holds great potential for the discovery of novel drug targets and the development of promising neuroprotective treatment strategies. This review provides an update on the molecular basis of the differential vulnerability of midbrain DA neurons in PD and highlights the most recent developments in this field.
    Frontiers in Neuroanatomy 01/2014; 8:152. · 4.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson disease (PD) is the third most common neurodegenerative disorder affecting humans. Although it is clear that the etiology of a small number of PD cases is strictly genetic (either dominant or recessive) or purely environmental factors (e.g., pesticides, drug use, viruses, heavy metal exposure), it is likely that most cases arise from a combination of the two risk factors. For this reason, the generation and study of animal models where these interactions can be studied can provide important information regarding the pathophysiology of PD. In this chapter, we examine the mechanisms underlying xenobiotic-induced Parkinsonism using 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine as the model agent. We also examine other environmental agents that have been shown to induce Parkinsonism, including paraquat, lippopolysaccharide, and the highly pathogenic avian influenza virus.
    Movement Disorder. Genetics and models, Second edited by Mark LeDoux, 10/2014: pages 287-306; Elsevier., ISBN: 978-0-12-405195-9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many neurodegenerative disorders are linked to irreversible protein aggregation, a process that usually comes along with toxicity and serious cellular damage. However, it is emerging that protein aggregation can also serve for physiological purposes, as impressively shown for prions. While the aggregation of this protein family was initially considered exclusively toxic in mammalians organisms, it is now almost clear that many other proteins adopt prion-like attributes to rationally polymerize into higher order complexes with organized physiologic roles. This implies that cells can tolerate at least in some measure the accumulation of inherently dangerous protein aggregates for functional profit. This review summarizes currently known strategies that living organisms adopt to preserve beneficial aggregation, and to prevent the catastrophic accumulation of toxic aggregates that frequently accompany neurodegeneration.
    Frontiers in Cellular Neuroscience 02/2015; · 4.18 Impact Factor

Full-text (2 Sources)

Download
14 Downloads
Available from
Feb 4, 2015