Article

Innate sensing of bacterial cyclic dinucleotides: more than just STING.

School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
Nature Immunology (Impact Factor: 24.97). 12/2012; 13(12):1137-9. DOI: 10.1038/ni.2469
Source: PubMed
0 Bookmarks
 · 
227 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cyclic di-AMP (c-di-AMP) is a signaling molecule that has been shown to play important roles in bacterial physiology and infections. Currently, c-di-AMP detection and quantification relies mostly on the use of high-performance liquid chromatography (HPLC) or liquid chromatography-mass spectrometry (LC-MS). In this study, a competitive enzyme-linked immunosorbent assay (ELISA) for the quantification of c-di-AMP was developed, which utilizes a novel pneumococcal c-di-AMP binding protein (CabP) and a newly commercialized c-di-AMP derivative. With this new method, c-di-AMP concentrations in biological samples can be quickly and accurately quantified. Furthermore, this assay is much more efficient than current methods as it requires less overall cost and training while processing many samples at once. Therefore, this assay can be extensively used in research into c-di-AMP signaling.
    Journal of Microbiological Methods 09/2014; 107. DOI:10.1016/j.mimet.2014.08.026 · 2.10 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tuberculosis (TB) remains a major cause of morbidity and mortality worldwide. The pathogenesis by the causative agent, Mycobacterium tuberculosis, is still not fully understood. We have previously reported that M. tuberculosis Rv3586 (disA) encodes a diadenylate cyclase, which converts ATP to cyclic di-AMP (c-di-AMP). In this study, we demonstrated that a protein encoded by Rv2837c (cnpB) possesses c-di-AMP phosphodiesterase activity and cleaves c-di-AMP exclusively to AMP. Our results showed that in M. tuberculosis, deletion of disA abolished bacterial c-di-AMP production, whereas deletion of cnpB significantly enhanced the bacterial c-di-AMP accumulation and secretion. The c-di-AMP levels in both mutants could be corrected by expressing the respective gene. We also found that macrophages infected with ΔcnpB secreted much higher levels of IFN-β than those infected with the wildtype (WT) or the complemented mutant. Interestingly, mice infected with M. tuberculosis ΔcnpB displayed significantly reduced inflammation, less bacterial burden in the lungs and spleens, and extended survival compared to those infected with the WT or the complemented mutant. These results indicate that deletion of cnpB results in attenuated virulence, which is correlated with elevated c-di-AMP levels
    Molecular Microbiology 05/2014; DOI:10.1111/mmi.12641 · 5.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 (DDX41), a member of the DEXDc helicase family, was recently identified as an intracellular DNA sensor in mouse myeloid dendritic cells. In this study, porcine DDX41 (poDDX41) was cloned and its role in the type I interferon (IFN) signaling pathway was investigated in porcine kidney (PK-15) cells. Full-length poDDX41 cDNA encodes 622 amino acid residues and contains a DEADc domain and a HELICc domain. poDDX41 mRNA is widely expressed in different tissues, especially the stomach and liver. Overexpression of poDDX41 in PK-15 cells induced IFN-β by activating transcription factors IRF3 and NF-κB. Knockdown of poDDX41 with siRNA significantly reduced IFN-β expression induced by poly(dA:dT), a double-stranded DNA (dsDNA) analogue, or pseudorabies virus, a dsDNA swine virus. Therefore, poDDX41 is involved in the dsDNA- and dsDNA-virus-mediated type I IFN signaling pathway in porcine kidney cells.
    Developmental & Comparative Immunology 07/2014; 47(2). DOI:10.1016/j.dci.2014.07.020 · 3.71 Impact Factor