Article

Maximum Bite Force and Prey Size of Tyrannosaurus rex and Their Relationships to the Inference of Feeding Behavior

Historical Biology (Impact Factor: 1.19). 07/2003; 16(1):1-12. DOI: 10.1080/0891296021000050755

ABSTRACT The feeding behavior of the theropod dinosaur Tyrannosaurus rex is investigated through analysis of two variables that are critical to successful predation, bite force and prey body mass, as they scale with the size of the predator. These size-related variables have important deterministic effects on the predator's feeding strategy, through their effects on lethal capacity and choice of prey. Bite force data compiled for extant predators (crocodylians, carnivorans, chelonians and squamates) are used to establish a relationship between bite force and body mass among extant predators. These data are used to estimate the maximum potential bite force of T. rex, which is between about 183,000 and 235,000 N for a bilateral bite. The relationship between maximum prey body mass and predator body mass among the same living vertebrates is used to infer the likely maximum size of prey taken by T. rex in the Late Cretaceous. This makes it possible to arrive at a more rigorous assessment of the role of T. rex as an active predator and/or scavenger than has hitherto been possible. The results of this analysis show that adult Triceratops horridus fall well within the size range of potential prey that are predicted to be available to a solitary, predaceous T. rex. This analysis establishes boundary conditions for possible predator/prey relationships among other dinosaurs, as well as between these two taxa.

0 Bookmarks
 · 
406 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Scratches on bones have routinely been attributed to tooth marks (a predominantly untested speculation), ignoring the effects of claws, perhaps because of the general assumption that claws are too soft to damage bone. However, some pathologies appears to be more compatible with claw rather than tooth impacts. Therefore, it is critical to determine if the claws of any animal are capable of scratching into the surface of any bone - a test and proof of concept. A tiger enrichment program was used to document actual bone damage unequivocally caused by claws, by assuring that the tiger had access to bones only by using its paws (claws). The spectrum of mechanisms causing bone damage was expanded by evidentiary analysis of claw-induced pathology. While static studies suggested that nails/claws could not disrupt bone, specific tiger enrichment activities documented that bones were susceptible to damage from the kinetic energy effect of the striking claw. This documents an expanded differential consideration for scratch marks on bone and evidences the power of the claw.
    PLoS ONE 01/2013; 8(9):e73811. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Blanco R.E., Rinderknecht, A. & Lecuona, G. 2011: The bite force of the largest fossil rodent (Hystricognathi, Caviomorpha, Dinomyidae). Lethaia, Vol. 45, pp. 157–163.An exceptionally well‐preserved skull of the largest fossil rodent Josephoartigasia monesi allows the first analysis of the bite mechanics of this group of South American giant rodents. In this study, we reconstructed the main anatomical features of the skull of this Pliocene rodent, relating them to the bite force at incisors. Bite force was estimated using three different techniques. Two methods suggest that bite forces at incisors of around 1000 N were possible for these mammals. However, the incisors seem to be stronger than expected for this bite force implying that the bite forces may have been greater than 3000 N. We consider three hypotheses: allometric effects, teeth digging or defence against predators, to explain our results. □Bite force, Dinomyidae, incisors, largest rodent, Pliocene.
    Lethaia 01/2012; 45(2). · 2.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tyrannosaurid necks were strong and powerful instruments for wielding the jaws during feeding. Hypotheses of tyrannosaurid neck function are here grounded by observations of neck morphology and function in extant archosaurs. Respectively derived morphologies in birds, crocodilians and tyrannosaurids compromise inferences for some muscles. However, alternate reconstructions indicate that tyrannosaurid neck muscles combined the robustness of crocodilian musculature with the functional regionalization seen in birds. Alternate hypothesized attachments of an avian-style muscle, the M. complexus, indicate different capacities for head dorsiflexion and lateroflexion. Electromyography of the M. complexus in chickens strengthens inferences about its function in both dorsiflexion and lateroflexion in extinct dinosaurs, and further suggests that it imparted roll about the longitudinal axis in concert with the actions of contralateral ventroflexors. Videography of extant raptors reveals the involvement of the neck when striking at prey and tearing flesh, and reconstructed tyrannosaurid musculature indicates capacity for similar neck function during the feeding cycle. As for birds, muscles originating in the anterior region of the neck likely stabilized the head by isometric or eccentric contraction as tyrannosaurids (and other large theropods) tore flesh by rearing back the body through extension of their hind limbs.
    Journal of Zoology 04/2014; 292(4). · 2.04 Impact Factor