Article

Molecular phylogeny and evolution of floral characters of Artemisia and allies (Anthemideae, Asteraceae): evidence from nrDNA ETS and ITS sequences

Taxon (Impact Factor: 2.78). 01/2008; 57(1):66-78.

ABSTRACT To better understand the evolutionary history of the genus Artemisia (Anthemideae, Asteraceae) and its relationships to other genera of the subtribes Artemisiinae, Leucantheminae and Tanacetinae, 63 sequences of the external and 10 of the internal transcribed spacer of nuclear ribosomal DNA (ETS and ITS) were newly generated. Analyses were performed on the combined dataset using maximum parsimony, maximum likelihood and Bayesian inference. The combined analysis supports that all Artemisiinae genera included plus Hippolytia (subtribe Tanacetinae) and Nipponanthemum (subtribe Leucantheminae) constitute a monophyletic group. Within this group, a successive branching shows three monophyletic groups: (1) Nipponanthemum/Hippolytia/Brachanthemum; (2) the Dendranthema group; and (3) the Artemisia/Kaschgaria group. Within the latter, a new sister-group relationship is found between the monophyletic genus Kaschgaria and the Artemisia group, which comprises two main evolutionary lineages: (i) the Dracunculus clade including various Artemisia species and four Asian genera: Filifolium, Mausolea, Neopallasia and Turaniphytum; and (ii) the remaining subgenera of Artemisia plus the two North American genera: Picrothamnus and Sphaeromeria. Within this phylogenetic framework the evolution of two important characters (capitula and pollen type) in the group was inferred. Character reconstruction reveals that discoid capitula and Anthemis pollen type are the ancestral condition in the subtribe. The Artemisia/Kaschgaria lineage probably originated from an ancestor with disciform capitula, central hermaphrodite florets and Artemisia pollen type. Molecular evidence of several biogeographical migration routes of the genus Artemisia is presented.

0 0
 · 
0 Bookmarks
 · 
197 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Fluorescence in situ hybridization (FISH) with 35S and 5S rDNA probes was used to characterize cytogenetically representatives of Artemisia subgenus Dracunculus and allied species and to explore their evolution following polyploidization. At the diploid level two rDNA loci were observed in most species belonging to the A. dracun-culus complex, a pattern considered to be the ancestral state for diploid Artemisia. In contrast, representative species from the Eurasian grade which belong to the other major lineage of the subgenus had more heteroge-neous rDNA profiles, with three to five loci at the diploid level. Divergent patterns of locus evolution were also detected in polyploids, with the number and distribution of rDNA loci broadly fitting the two main diversification lineages in the subgenus. In the polyploid complex of A. dracunculus, the number of rDNA loci was almost proportional to ploidy, although monoploid genome size was shown to decrease with increasing ploidy. However, in polyploids from the Eurasian grade we found a remarkable reduction in the number of rDNA sites, suggesting that these species might have experienced either a complete loss of loci or a significant reduction in the number of repeats following polyploid formation.
    Botanical Journal of the Linnean Society 01/2013; 171:655-666. · 2.59 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Abstract The analysis of morphological variation and RAPD polymorphism distinguished populations of A. herba alba from populations of A. judaica and A. monosperma. Higher morphological diversity is found in A. herba alba compared to the other two species, but molecular data derived from RAPD polymorphism also indicated that A. herba alba is more polymorphic than the other two species. However, RAPD fingerprinting also indicated sharp polymorphism among populations of both A. judaica and A. monosperma. Geographic and local ecological variations related to elevation of the sites of the examined populations may be regarded to have played a role in the genetic diversity of the examined populations of Artemisia species in the study area. The results are important for future plans for sustainable conservation of medicinal plants in Saudi Arabia. However, extensive sampling of the examined Artemisia species populations is required, and more regional data should be obtained from other distribution areas.
    Plant Systematics and Evolution 06/2012; · 1.31 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: We investigated the range dynamics of Artemisia eriantha, a widespread, but rare, mountain plant with a highly disjunct distribution in the European Alpine System. We focused on testing the roles of vicariance and long-distance dispersal in shaping the current distribution of the species. To this end, we collected AFLP and plastid DNA sequence data for 17 populations covering the entire distributional range of the species. Strong phylogeographical structure was found in both datasets. AFLP data suggested that almost all populations were genetically strongly differentiated, with 58% of the overall genetic variation partitioned among populations. Bayesian clustering identified five groups of populations: Balkans, Pyrenees, Central Apennines, one southwestern Alpine population and a Widespread cluster (eastern Pyrenees, Alps, Carpathians). Major groups were supported by neighbor-joining and NeighbourNet analyses. Fourteen plastid haplotypes were found constituting five strongly distinct lineages: Alps plus Pyrenees, Apennines, Balkans, southern Carpathians, and a Widespread group (eastern Pyrenees, northern Carpathians, Mt. Olympus). Plastid DNA data suggested that A. eriantha colonized the European Alpine System in a westward direction. Although, in southern Europe, vicariant differentiation among the Iberian, Italian and Balkan Peninsulas predominated, thus highlighting their importance as glacial refugia for alpine species, in temperate mountain ranges, long-distance dispersal prevailed. This study emphasizes that currently highly disjunct distributions can be shaped by both vicariance and long-distance dispersal, although their relative importance may be geographically structured along, for instance, latitude, as in A. eriantha. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, ●●, ●●–●●.
    Botanical Journal of the Linnean Society 01/2014; · 2.59 Impact Factor

Full-text

View
176 Downloads
Available from
Dec 8, 2012