CLOCK deubiquitylation by USP8 inhibits CLK/CYC transcription in Drosophila.

Howard Hughes Medical Institute.
Genes & development (Impact Factor: 12.64). 11/2012; 26(22):2536-49. DOI: 10.1101/gad.200584.112
Source: PubMed

ABSTRACT A conserved transcriptional feedback loop underlies animal circadian rhythms. In Drosophila, the transcription factors CLOCK (CLK) and CYCLE (CYC) activate the transcription of direct target genes like period (per) and timeless (tim). They encode the proteins PER and TIM, respectively, which repress CLK/CYC activity. Previous work indicates that repression is due to a direct PER-CLK/CYC interaction as well as CLK/CYC phosphorylation. We describe here the role of ubiquitin-specific protease 8 (USP8) in circadian transcriptional repression as well as the importance of CLK ubiquitylation in CLK/CYC transcription activity. usp8 loss of function (RNAi) or expression of a dominant-negative form of the protein (USP8-DN) enhances CLK/CYC transcriptional activity and alters fly locomotor activity rhythms. Clock protein and mRNA molecular oscillations are virtually absent within circadian neurons of USP8-DN flies. Furthermore, CLK ubiquitylation cycles robustly in wild-type flies and peaks coincident with maximal CLK/CYC transcription. As USP8 interacts with CLK and expression of USP8-DN increases CLK ubiquitylation, the data indicate that USP8 deubiquitylates CLK, which down-regulates CLK/CYC transcriptional activity. Taken together with the facts that usp8 mRNA cycles and that its transcription is activated directly by CLK/CYC, USP8, like PER and TIM, contributes to the transcriptional feedback loop cycle that underlies circadian rhythms.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Circadian rhythms, endogenous cycles of about 24 h in physiology, are generated by a master clock located in the suprachiasmatic nucleus of the hypothalamus and other clocks located in the brain and peripheral tissues. Circadian disruption is known to increase the incidence of various illnesses, such as mental disorders, metabolic syndrome, and cancer. At the molecular level, periodicity is established by a set of clock genes via autoregulatory translation-transcription feedback loops. This clock mechanism is regulated by post-translational modifications such as phosphorylation and ubiquitination, which set the pace of the clock. Ubiquitination in particular has been found to regulate the stability of core clock components but also other clock protein functions. Mutation of genes encoding ubiquitin ligases can cause either elongation or shortening of the endogenous circadian period. Recent research has also started to uncover roles for deubiquitination in the molecular clockwork. Here, we review the role of the ubiquitin pathway in regulating the circadian clock and we propose that ubiquitination is a key element in a clock protein modification code that orchestrates clock mechanisms and circadian behavior over the daily cycle.
    Frontiers in Molecular Neuroscience 08/2014; 7:69. DOI:10.3389/fnmol.2014.00069
  • [Show abstract] [Hide abstract]
    ABSTRACT: Circadian (~24hr) clocks control daily rhythms in metabolism, physiology and behavior in animals, plants and microbes. In Drosophila, these clocks keep circadian time via transcriptional feedback loops in which CLOCK-CYCLE (CLK-CYC) initiates transcription of period (per) and timeless (tim), accumulating levels of PER and TIM feed back to inhibit CLK-CYC, and degradation of PER and TIM allows CLK-CYC to initate the next cycle of transcription. The timing of key events in this feedback loop are controlled by, or coincide with, rhythms in PER and CLK phosphorylation, where PER and CLK phosphorylation is high during transcriptional repression. PER phosphorylation at specific sites controls its subcellular localization, activity and stability, but comparatively little is known about the identity and function of CLK phosphorylation sites. Here we identify eight CLK phosphorylation sites via mass spectrometry and determine how phosphorylation at these sites impacts behavioral and molecular rhythms by transgenic rescue of a new Clk null mutant. Eliminating phosphorylation at four of these sites accelerates the feedback loop to shorten circadian period, whereas loss of CLK phosphorylation at serine 859 increases CLK activity, thereby increasing PER levels and accelerating transcriptional repression. These results demonstrate that CLK phosphorylation influences circadian period by regulating CLK activity and progression through the feedback loop.
    Journal of Biological Chemistry 05/2014; 289(28). DOI:10.1074/jbc.M114.568493 · 4.60 Impact Factor
  • Source
    04/2013, Degree: PhD

Full-text (2 Sources)

Available from
Jun 2, 2014