Article

Autism After Infection, Febrile Episodes, and Antibiotic Use During Pregnancy: An Exploratory Study

Departments of Public Health, Section of Epidemiology and.
PEDIATRICS (Impact Factor: 5.3). 11/2012; 130(6). DOI: 10.1542/peds.2012-1107
Source: PubMed

ABSTRACT OBJECTIVES:Results of animal studies suggest that maternal immune activation during pregnancy causes deficiencies in fetal neurodevelopment. Infectious disease is the most common path to maternal immune activation during pregnancy. The goal of this study was to determine the occurrence of common infections, febrile episodes, and use of antibiotics reported by the mother during pregnancy and the risk for autism spectrum disorder (ASD) and infantile autism in the offspring.METHODS:We used a population-based cohort consisting of 96 736 children aged 8 to 14 years and born from 1997 to 2003 in Denmark. Information on infection, febrile episodes, and use of antibiotics was self-reported through telephone interviews during pregnancy and early postpartum. Diagnoses of ASD and infantile autism were retrieved from the Danish Psychiatric Central Register; 976 children (1%) from the cohort were diagnosed with ASD.RESULTS:Overall, we found little evidence that various types of mild common infectious diseases or febrile episodes during pregnancy were associated with ASD/infantile autism. However, our data suggest that maternal influenza infection was associated with a twofold increased risk of infantile autism, prolonged episodes of fever caused a threefold increased risk of infantile autism, and use of various antibiotics during pregnancy were potential risk factors for ASD/infantile autism.CONCLUSIONS:Our results do not suggest that mild infections, febrile episodes, or use of antibiotics during pregnancy are strong risk factors for ASD/infantile autism. The results may be due to multiple testing; the few positive findings are potential chance findings.

0 Followers
 · 
185 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the pathogenesis of Neurodevelopmental Disorders (NDDs) has proven to be challenging. Using Autism Spectrum Disorder (ASD) as a paradigmatic NDD, this paper reviews the existing literature on the etiologic substrates of ASD and explores how genetic epidemiology approaches including gene-environment interactions (GxE) can play roles in identifying factors associated with ASD etiology. New genetic and bioinformatics strategies have yielded important clues to ASD genetic substrates. Next steps for understanding ASD pathogenesis require significant effort to focus on how genes and environment interact with one another in typical development and its perturbations. Along with larger sample sizes, future study designs should include sample ascertainment that is epidemiologic and population-based to capture the entire ASD spectrum with both categorical and dimensional phenotypic characterization, environmental measurement with accuracy, validity and biomarkers, statistical methods to address population stratification, multiple comparisons and GxE of rare variants, animal models to test hypotheses and, new methods to broaden the capacity to search for GxE, including genome-wide and environment-wide association studies, precise estimation of heritability using dense genetic markers and consideration of GxE both as the disease cause and a disease course modifier. While examination of GxE appears to be a daunting task, tremendous recent progress in gene discovery opens new horizons for advancing our understanding the role of GxE in the pathogenesis of, and ultimately identifying the causes, treatments and even prevention for ASD and other NDDs.
    Biological Psychiatry 11/2014; 77(1). DOI:10.1016/j.biopsych.2014.11.001 · 9.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidence suggests that autism spectrum disorder (ASD) and many forms of developmental delay (DD) originate during fetal development. Preeclampsia may trigger aberrant neurodevelopment through placental, maternal, and fetal physiologic mechanisms. To determine whether preeclampsia is associated with ASD and/or DD. The Childhood Autism Risks from Genetics and the Environment (CHARGE) study is a population-based, case-control investigation of ASD and/or DD origins. Children from 20 California counties aged 24 to 60 months at the time of recruitment and living in catchment areas with a biological parent fluent in English or Spanish were enrolled from January 29, 2003, through April 7, 2011. Children with ASD (n = 517) and DD (n = 194) were recruited through the California Department of Developmental Services, the Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, and referrals. Controls with typical development (TD) (n = 350) were randomly selected from birth records and frequency matched on age, sex, and broad geographic region. Physicians diagnosing preeclampsia were masked to neurodevelopmental outcome, and those assessing neurodevelopmental function were masked to preeclampsia status. Preeclampsia and placental insufficiency were self-reported and abstracted from medical records. The Autism Diagnostic Observation Schedule and Autism Diagnostic Interview-Revised were used to confirm ASD, whereas children with DD and TD were confirmed by Mullen Scales of Early Learning and Vineland Adaptive Behavior Scales and were free of autistic symptoms. Hypotheses were formulated before data collection. Children with ASD were twice as likely to have been exposed in utero to preeclampsia as controls with TD after adjustment for maternal educational level, parity, and prepregnancy obesity (adjusted odds ratio, 2.36; 95% CI, 1.18-4.68); risk increased with greater preeclampsia severity (test for trend, P = .02). Placental insufficiency appeared responsible for the increase in DD risk associated with severe preeclampsia (adjusted odds ratio, 5.49; 95% CI, 2.06-14.64). Preeclampsia, particularly severe disease, is associated with ASD and DD. Faulty placentation manifests in the mother as preeclampsia with vascular damage, enhanced systemic inflammation, and insulin resistance; in the placenta as oxygen and nutrient transfer restriction and oxidative stress; and in the fetus as growth restriction and progressive hypoxemia. All are potential mechanisms for neurodevelopmental compromise.
    JAMA Pediatrics 12/2014; DOI:10.1001/jamapediatrics.2014.2645 · 4.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The pathogenesis of autism spectrum disorder (ASD) is unknown, and the immune system has been appointed to play an important role. The interleukin 33 (IL-33), a member of the IL-1, may act as an alarmin. This study aimed to evaluate plasma levels of IL-33, sST2, and IL-1β in 30 patients with ASD in comparison with 18 controls matched by gender, age and maternal age at childbirth. Patients did not differ from controls in IL-33, sST2, and IL-1β plasma levels. Alarmin levels were not correlated with age, and neither was influenced by clinical parameters. Our results undermine the role of IL-33/ST2 in ASD. Copyright © 2014 Elsevier B.V. All rights reserved.
    Journal of Neuroimmunology 01/2015; 278C:69-72. DOI:10.1016/j.jneuroim.2014.11.021 · 2.79 Impact Factor

Full-text

Download
21 Downloads
Available from
May 21, 2014