Article

Aging and reprogramming: A two-way street

Department of Genetics, Stanford University, Stanford, CA 94305, USA.
Current opinion in cell biology (Impact Factor: 8.74). 11/2012; 24(6). DOI: 10.1016/j.ceb.2012.10.004
Source: PubMed

ABSTRACT Aging is accompanied by the functional decline of cells, tissues, and organs, as well as a striking increase in a wide range of diseases. The reprogramming of somatic cells to induced pluripotent stem cells (iPSCs) opens new avenues for the aging field and has important applications for therapeutic treatments of age-related diseases. Here we review emerging studies on how aging and age-related pathways influence iPSC generation and property. We discuss the exciting possibility that reverting to a pluripotent stem cell stage erases several deficits associated with aging and offers new strategies for rejuvenation. Finally, we argue that reprogramming provides a unique opportunity to model aging and perhaps exceptional longevity.

Download full-text

Full-text

Available from: Anne Brunet, Jul 07, 2015
0 Followers
 · 
114 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest Retinitis pigmentosa is an inherited disorder in which the gradual degeneration of light-sensitive cells in the outer retina, known as photoreceptors, causes a progressive loss of sight. Retinitis pigmentosa can also occur as part of a wider syndrome: patients with Usher syndrome, for example, suffer from early-onset deafness and then develop retinitis pigmentosa later in life. Usher syndrome is caused by mutations in any of more than ten genes, but the most commonly affected is USH2A, which encodes a protein called usherin. Mutations in USH2A can also cause retinitis pigmentosa on its own. Clinical trials are underway to determine whether it is possible to treat various forms of inherited retinal degeneration using gene therapy. This involves inserting a functional copy of the gene associated with the disease into an inactivated virus, which is then injected into the eye. The virus carries the target gene to the light-sensitive photoreceptor cells where it can replace the faulty gene. This could be particularly useful for conditions such as Usher syndrome, in which the early-onset deafness makes it possible to diagnose retinitis pigmentosa before substantial numbers of photoreceptor cells have been lost. For gene therapy to become a widely used strategy for the treatment of retinal degenerative disease, identification and functional interrogation of the disease-causing gene/mutations will be critical. This is especially true for large highly polymorphic genes such as USH2A that often have mutations that are difficult to identify by standard sequencing techniques. Likewise, viruses that can carry large amounts of genetic material, or endogenous genome editing approaches, will need to be developed and validated in an efficient patient-specific model system. Tucker et al. might have found a way to address these problems. In their study, they used skin cells from a retinitis pigmentosa patient with mutations in USH2A to produce induced pluripotent stem cells. These are cells that can be made to develop into a wide variety of mature cell types, depending on the exact conditions in which they are cultured. Tucker et al. used these stem cells to generate photoreceptor precursor cells, which they transplanted into the retinas of immune-suppressed mice. The cells developed into normal-looking photoreceptor cells that expressed photoreceptor-specific proteins. These results have several implications. First, they support the idea that stem cell-derived retinal photoreceptor cells, generated from patients with unknown mutations, can be used to identify disease-causing genes and to interrogate disease pathophysiology. This will allow for a more rapid development of gene therapy strategies. Second, they demonstrate that USH2A mutations cause retinitis pigmentosa by affecting photoreceptors later in life rather than by altering their development. This suggests that it should, via early intervention, be possible to treat retinitis pigmentosa in adult patients with this form of the disease. Third, the technique could be used to generate animal models in which to study the effects of specific disease-causing mutations on cellular development and function. Finally, this study suggests that skin cells from adults with retinitis pigmentosa could be used to generate immunologically matched photoreceptor cells that can be transplanted back into the same patients to restore their sight. Many questions remain to be answered before this technique can be moved into clinical trials but, in the meantime, it will provide a new tool for research into this major cause of blindness. DOI: http://dx.doi.org/10.7554/eLife.00824.002
    eLife Sciences 08/2013; 2:e00824. DOI:10.7554/eLife.00824 · 8.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of induced pluripotent stem cells (iPSCs) has the potential to revolutionize the field of regenerative medicine. In the past few years, iPSCs have been the subject of intensive research towards their application in disease modeling and drug screening. In the future, these cells may be applied in cell therapy to replace or regenerate tissues by autologous transplantation. However, two major hurdles need to be resolved in order to reach the later goal: the low reprogramming efficiency and the safety risks, such as the integration of foreign DNA into the genome of the cells and the tumor formation potential arising from transplantation of residual undifferentiated cells. Recently, aging emerged as one of the barriers that accounts, at least in part, for the low reprogramming efficiency of bona fide iPSCs. Here, we review the molecular pathways linking aging and reprogramming along with the unanswered questions in the field. We discuss whether reprogramming rejuvenates the molecular and cellular features associated with age, and present the recent advances with iPSC-based models, contributing to our understanding of physiological and premature aging.
    Biogerontology 08/2013; 14(6). DOI:10.1007/s10522-013-9455-2 · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria are organelles playing pivotal roles in a range of diverse cellular functions, from energy generation to redox homeostasis and apoptosis regulation. Their loss of functionality may indeed contribute to the development of aging and age-related neurodegenerative disorders. Recently, mitochondria have been shown to exhibit peculiar features in pluripotent stem cells (PSCs). Moreover, an extensive restructuring of mitochondria has been observed during the process of cellular reprogramming, i.e. the conversion of somatic cells into induced pluripotent stem cells (iPSCs). These transformation events impact mitochondrial number, morphology, activity, cellular metabolism, and mtDNA integrity. PSCs retain the capability to self-renew indefinitely and to give rise to virtually any cell type of the body and thus hold great promise in medical research. Understanding the mitochondrial properties of PSCs, and how to modulate them, may thus help to shed light on the features of stemness and possibly increase our knowledge on cellular identity and differentiation pathways. Here, we review these recent findings and discuss their implications in the context of stem cell biology, aging research, and regenerative medicine. © 2013 S. Karger AG, Basel.
    Gerontology 11/2013; 60(2). DOI:10.1159/000355050 · 2.68 Impact Factor