Article

Photoluminescent DNA binding and cytotoxic activity of a platinum(II) complex bearing a tetradentate beta-diketiminate ligand

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. .
Dalton Transactions (Impact Factor: 4.1). 11/2012; 42(9). DOI: 10.1039/c2dt32462h
Source: PubMed

ABSTRACT A platinum(ii) complex of a monoanionic, tetradentate β-diketiminate (BDI) ligand with pendant quinoline arms, BDI(QQ)H, is reported. The complex, [Pt(BDI(QQ))]Cl, is emissive in DMSO, but non-emissive in aqueous buffer. Upon binding DNA in buffer, however, a 150-fold turn-on in emission intensity occurs. Dynamic light scattering and (1)H NMR spectroscopy indicate that [Pt(BDI(QQ))]Cl forms non-emissive aggregates in aqueous solution; DNA-binding disperses the aggregates leading to the large emission turn-on response. The cytotoxic activity of the complex, measured in two cancer cell lines, is comparable to or better than that of the established anticancer drug cisplatin.

0 Followers
 · 
84 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A dinuclear alkynylplatinum(II) terpyridine complex containing an amphiphilic binaphthol bridge was designed and synthesized, and was shown to display cylindrical columnar assemblies in aqueous acetonitrile solutions, presumably mediated by the PtPt and π-π stacking interactions. The length of the binaphthol bridge was found to have a profound effect on the degree of helicity for hierarchical helices of helices and serves as a critical determinant in the formation of tertiary structures for foldamers. Interestingly, the reciprocal association of multiple helices has led to luminescence enhancement behavior, which provides a luminescence turn-on switch for the reporting of the hierarchical assembly of foldamers into higher-order structures, distinct from that of the pure organic systems. Such a transverse aggregation of multiple helices driven by metallophilic interactions has been studied by electronic absorption, circular dichroism, emission spectroscopy and electron microscopy.
    Chemical Science 01/2013; 4(11):4228. DOI:10.1039/c3sc51534f · 8.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nacnac-based tetradentate chelates, {nacnac-(CH2py)2}(-) ({nn(PM)2}(-)) and {nacnac-(CH2py)(CHpy)}(n) ({nn(PM)(PI)}(n)) have been investigated in iron complexes. Treatment of Fe{N(TMS)2}2(THF) with {nn(PM)2}H afforded {nn(PM)2}FeN(TMS)2 [1-N(TMS)2], which led to {nn(PM)2}FeCl (1-Cl) from HCl and to {nn(PM)2}FeN3 (1-N3) upon salt metathesis. Dehydroamination of 1-N(TMS)2 was induced by L (L = PMe3, CO) to afford {nn(PM)(PI)}Fe(PMe3)2 [2-(PMe3)2] and {nn(PM)(PI)}FeCO (3-CO). Substitution of 2-(PMe3)2 led to {nn(PM)(PI)}Fe(PMe3)CO [2-(PMe3)CO], and exposure to a vacuum provided {nn(PM)(PI)}Fe(PMe3) (3-PMe3). Metathesis routes to {nn(PM)(PI)}FeL2 (2-L2; L = PMe3, PMe2Ph) and {nn(PM)(PI)}FeL (3-L; L = PMePh2, PPh3) from [{nn(PM)(PI)}(2-)]Li2 and FeBr2(THF)2 in the presence of L proved feasible, and 1e(-) and 2e(-) oxidation of 2-(PMe3)2 afforded 2(+)-(PMe3)2 and 2(2+)-(PMe3)2 salts. Mössbauer spectroscopy, structural studies, and calculational assessments revealed the dominance of iron(II) in both high-spin (1-X) and low-spin (2-L2 and 3-L) environments, and the redox noninnocence (RNI) of {nn(PM)(PI)}(n) [2-L2, 3-L, n = 2-; 2(+)-(PMe3)2, n = 1-; 2(2+)-(PMe3)2, n = 0]. A discussion regarding the utility of RNI in chemical reactivity is proffered.
    Inorganic Chemistry 04/2014; 53(9). DOI:10.1021/ic5001123 · 4.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nacnac-based tridentate ligands containing a pyridyl-methyl and a 2,6-dialkyl-phenylamine (i.e., (2,6-R2-C6H3N═C(Me)CH═C(Me)NH(CH2py); R = Et, {Et(nn)PM}H; R = (i)Pr, {(i)Pr(nn)PM}H) were synthesized by condensation routes. Treatment of M{N(TMS)2}THFn (M = Cr, n = 2; M = Fe, Co, n = 1; TMS = trimethylsilane; THF = tetrahydrofuran) with {(i)Pr(nn)PM}H) afforded {(i)Pr(nn)PM}MN(TMS)2 (1-M(iPr); M = Cr, Fe); {Et(nn)PM}MN(TMS)2 (1-M(Et); M = Fe, Co) was similarly obtained. {R(nn)PM}FeBr (R = (i)Pr, Et; 2-Fe(R)) were prepared from FeBr2 and {R(nn)PM}Li, and alkylated to generate {R(nn)PM}Fe(neo)Pe (R = (i)Pr, Et; 3-Fe(R)). Carbonylation of 3-Fe(R) provided {(i)Pr(nn)PM}Fe(CO(neo)Pe)CO (4-Fe(iPr)), and carbonylations of 1-Fe(R) (R = Et, (i)Pr) and 1-Cr(iPr) induced deamination to afford {R(nn)PI}Fe(CO)2 (R = (i)Pr, 5-Fe(iPr); Et, 5-Fe(Et)), where PI is pyridine-imine, and {κ(2)-N,N-pyrim-pyr}Cr(CO)4 (6-Cr(iPr)), in which the aryl-amide side of the nacnac attacked the incipient PI group. Carbon-carbon bonds were formed at the imine carbon of the {R(nn)PI} ligand. Addition of [{(i)Pr(nn)PI}(2-)](K(+)(THF)x)2 to FeCl3 generated {(i)Pr(nn)CHpy}2Fe2Cl2 (7-Fe(iPr)), and TMSN3 induced the deamination of 1-Fe(Et), but with disproportionation to provide {[Et(nn)CHpy]2}Fe (8-Fe(Et)). Ph2CN2 induced C-C bond formation with 1-Fe(iPr) via its thermal degradation to ultimately afford {(i)Pr(nn)CHpy}2(FeN═CPh2)2 (9-Fe(iPr)). The compounds were examined by X-ray crystallography (1-M(iPr), M = Cr, Fe; 1-Co(Et); 2-Fe(iPr); 4-Fe(iPr); 5-Fe(iPr); 6-Cr(iPr); 7-Fe(iPr); 8-Fe(Et); 9-Fe(iPr)), Mössbauer spectroscopy, and NMR spectroscopy. Structural parameters assessing redox noninnocence are discussed, as are structural and mechanistic consequences of the various electronic environments.
    Inorganic Chemistry 07/2014; 53(14). DOI:10.1021/ic500807y · 4.79 Impact Factor