Desirable attributes of vaccines for deployment in low-resource settings.

PATH, Seattle, Washington 98121. .
Journal of Pharmaceutical Sciences (Impact Factor: 3.13). 11/2012; DOI: 10.1002/jps.23352
Source: PubMed

ABSTRACT A number of product development partnerships are actively developing new vaccines to combat infectious diseases in developing countries. To be effective, the products under development should not only be safe, efficacious, and affordable, but they should also have additional desirable technical attributes, including enhanced stability, efficient packaging, and improved ease of delivery. New technologies are now available to achieve these attributes; however, many of the technologies have yet to be adopted by the vaccine industry. This commentary discusses the opportunities and challenges associated with advancing such attributes, especially vaccine thermostability and dose sparing strategies, and the critical issues that must be addressed to bridge the gap between technology development and product development. © 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci.

  • [Show abstract] [Hide abstract]
    ABSTRACT: To develop convenient, effective cold chain-free subunit vaccines, a mannose-PEG-cholesterol conjugate (MPC) was synthesized as a lectin binding molecule and anchored onto liposomes which entrapped lipid A and model antigen to form a vaccine adjuvant-delivery system targeting antigen presenting cells. With MPC, soy phosphatidylcholine, stearylamine and monophosphoryl lipid A as emulsifiers dissolved in oil phase (O), and sucrose and BSA in water phase (W), the O/W emulsions were prepared and subsequently lyophilized. The lyophilized product was stable enough to be stored at room temperature and, upon rehydration, formed MPC-/lipid A-liposomes (MLLs) with a size under 300 nm and antigen association rates of around 36%. The MLLs given to mice via oral mucosal (o.m.) administration showed no side effects but induced potent immune responses as evidenced by the high levels of IgG in the sera and IgA in the salivary, intestinal and vaginal secretions of mice. High levels of IgG2a and IFN-γ in treated mice revealed that MLLs via o.m. vaccination induced a mixed Th1/Th2 response against antigens, establishing both humoral and cellular immunity. Thus, the MLLs may be a potent cold chain-free oral mucosal vaccine adjuvant-delivery system.
    European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V 04/2014; · 3.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Instability of vaccines often emerges as a key challenge during clinical development (lab to clinic) as well as commercial distribution (factory to patient). To yield stable, efficacious vaccine dosage forms for human use, successful formulation strategies must address a combination of interrelated topics including stabilization of antigens, selection of appropriate adjuvants, and development of stability-indicating analytical methods. This review covers key concepts in understanding the causes and mechanisms of vaccine instability including (1) the complex and delicate nature of antigen structures (e.g., viruses, proteins, carbohydrates, protein-carbohydrate conjugates, etc.), (2) use of adjuvants to further enhance immune responses, (3) development of physicochemical and biological assays to assess vaccine integrity and potency, and (4) stabilization strategies to protect vaccine antigens and adjuvants (and their interactions) during storage. Despite these challenges, vaccines can usually be sufficiently stabilized for use as medicines through a combination of formulation approaches combined with maintenance of an efficient cold chain (manufacturing, distribution, storage and administration). Several illustrative case studies are described regarding mechanisms of vaccine instability along with formulation approaches for stabilization within the vaccine cold chain. These include live, attenuated (measles, polio) and inactivated (influenza, polio) viral vaccines as well as recombinant protein (hepatitis B) vaccines.
    Biologicals 01/2014; · 1.41 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have used a protein-based vaccine, a live virus vaccine, and an experimental adjuvant to evaluate the utility of an advanced kinetic modeling approach for stability prediction. The modeling approach uses a systematic and simple procedure for the selection of the most appropriate kinetic equation to describe the degradation rate of compounds subjected to accelerated conditions. One-step and two-step reactions with unlimited combinations of kinetic models were screened for the three products under evaluation. The most appropriate mathematical model for a given product was chosen based on the values of residual sum of squares and the weight parameter w. A relatively simple n-th order kinetic model best fitted the degradation of an adjuvanted protein vaccine with a prediction error lower than 10%. A more complex two-step model was required to describe inactivation of a live virus vaccine under normal and elevated storage temperatures. Finally, an autocatalytic-type kinetic model best fitted the degradation of an oil-in-water adjuvant formulation. The modeling approach described here could be used for vaccine stability prediction, expiry date estimation, and formulation selection. To the best of our knowledge, this is the first report describing a global kinetic analysis of degradation of vaccine components with high prediction accuracy. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci
    Journal of Pharmaceutical Sciences 08/2014; · 3.13 Impact Factor