Article

Statin Use and Reduced Cancer-Related Mortality

Department of Clinical Biochemistry, Herlev Hospital, Copenhagen University Hospital, Herlev, Denmark.
New England Journal of Medicine (Impact Factor: 54.42). 11/2012; 367(19):1792-802. DOI: 10.1056/NEJMoa1201735
Source: PubMed

ABSTRACT A reduction in the availability of cholesterol may limit the cellular proliferation required for cancer growth and metastasis. We tested the hypothesis that statin use begun before a cancer diagnosis is associated with reduced cancer-related mortality.
We assessed mortality among patients from the entire Danish population who had received a diagnosis of cancer between 1995 and 2007, with follow-up until December 31, 2009. Among patients 40 years of age or older, 18,721 had used statins regularly before the cancer diagnosis and 277,204 had never used statins.
Multivariable-adjusted hazard ratios for statin users, as compared with patients who had never used statins, were 0.85 (95% confidence interval [CI], 0.83 to 0.87) for death from any cause and 0.85 (95% CI, 0.82 to 0.87) for death from cancer. Adjusted hazard ratios for death from any cause according to the defined daily statin dose (the assumed average maintenance dose per day) were 0.82 (95% CI, 0.81 to 0.85) for a dose of 0.01 to 0.75 defined daily dose per day, 0.87 (95% CI, 0.83 to 0.89) for 0.76 to 1.50 defined daily dose per day, and 0.87 (95% CI, 0.81 to 0.91) for higher than 1.50 defined daily dose per day; the corresponding hazard ratios for death from cancer were 0.83 (95% CI, 0.81 to 0.86), 0.87 (95% CI, 0.83 to 0.91), and 0.87 (95% CI, 0.81 to 0.92). The reduced cancer-related mortality among statin users as compared with those who had never used statins was observed for each of 13 cancer types.
Statin use in patients with cancer is associated with reduced cancer-related mortality. This suggests a need for trials of statins in patients with cancer.

0 Followers
 · 
113 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In contrast to the current belief that cholesterol reduction with statins decreases atherosclerosis, we present a perspective that statins may be causative in coronary artery calcification and can function as mitochondrial toxins that impair muscle function in the heart and blood vessels through the depletion of coenzyme Q10 and 'heme A', and thereby ATP generation. Statins inhibit the synthesis of vitamin K2, the cofactor for matrix Gla-protein activation, which in turn protects arteries from calcification. Statins inhibit the biosynthesis of selenium containing proteins, one of which is glutathione peroxidase serving to suppress peroxidative stress. An impairment of selenoprotein biosynthesis may be a factor in congestive heart failure, reminiscent of the dilated cardiomyopathies seen with selenium deficiency. Thus, the epidemic of heart failure and atherosclerosis that plagues the modern world may paradoxically be aggravated by the pervasive use of statin drugs. We propose that current statin treatment guidelines be critically reevaluated.
    Expert Review of Clinical Pharmacology 02/2015; 8(2):1-11. DOI:10.1586/17512433.2015.1011125
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Statins are inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), which is a rate-limiting enzyme in the mevalonate pathway. The pleiotropic effects of statins may be mediated by the inhibition of downstream products such as small GTP-binding proteins, Rho, Ras and Rac whose localization and function are dependent on isoprenylation. Preclinical studies of statins in different cancer cell lines and animal models showed antiproliferative, pro‑apoptotic and anti-invasive effects. Notably, statins showed targeted action in cancerous cell lines compared to normal cells. Previous studies have also shown the synergistic effects of statins with chemotherapeutic agents and radiotherapy. This effect of statins was also observed in chemotherapeutic-resistant tumors. Statins were reported to sensitize the cells to radiation by arresting them in the late G1 phase of the cell cycle. Similarly, population-based studies also demonstrated a chemopreventive and survival benefit of statins in various types of cancers. However, this benefit has yet to be proven in clinical trials. The inter-individual variation in response to statins may be contributed to many genetic and non-genetic factors, including single-nucleotide polymorphisms in HMGCR gene and the overexpression of heterogeneous nuclear ribonucleoprotein A1, which was reported to reduce HMGCR enzyme activity. However, more studies with large phase III randomized controlled trials in cancer patients should be conducted to establish the effect of statins in cancer prevention and treatment.
    Oncology Reports 03/2015; 33(3):1019-1039. DOI:10.3892/or.2015.3741 · 2.19 Impact Factor
  • Chest 07/2013; 144(1):358. DOI:10.1378/chest.13-0496 · 7.13 Impact Factor

Preview

Download
0 Downloads