Motions of the running horse and cheetah revisited: fundamental mechanics of the transverse and rotary gallop.

Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alta, Canada T2N 4N1.
Journal of The Royal Society Interface (Impact Factor: 3.86). 11/2008; 6(35):549-59. DOI: 10.1098/rsif.2008.0328
Source: PubMed

ABSTRACT Mammals use two distinct gallops referred to as the transverse (where landing and take-off are contralateral) and rotary (where landing and take-off are ipsilateral). These two gallops are used by a variety of mammals, but the transverse gallop is epitomized by the horse and the rotary gallop by the cheetah. In this paper, we argue that the fundamental difference between these gaits is determined by which set of limbs, fore or hind, initiates the transition of the centre of mass from a downward-forward to upward-forward trajectory that occurs between the main ballistic (non-contact) portions of the stride when the animal makes contact with the ground. The impulse-mediated directional transition is a key feature of locomotion on limbs and is one of the major sources of momentum and kinetic energy loss, and a main reason why active work must be added to maintain speed in locomotion. Our analysis shows that the equine gallop transition is initiated by a hindlimb contact and occurs in a manner in some ways analogous to the skipping of a stone on a water surface. By contrast, the cheetah gallop transition is initiated by a forelimb contact, and the mechanics appear to have much in common with the human bipedal run. Many mammals use both types of gallop, and the transition strategies that we describe form points on a continuum linked even to functionally symmetrical running gaits such as the tölt and amble.


Available from: John EA Bertram, Jun 03, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Individuals with unilateral below-knee amputation expend more energy than non-amputees during walking and exhibit reduced push-off work and increased hip work in the affected limb. Simple dynamic models of walking suggest a possible solution, predicting that increasing prosthetic ankle push-off should decrease leading limb collision, thereby reducing overall energy requirements. We conducted a rigorous experimental test of this idea wherein ankle-foot prosthesis push-off work was incrementally varied in isolation from one-half to two-times normal levels while subjects with simulated amputation walked on a treadmill at 1.25 m·s(-1). Increased prosthesis push-off significantly reduced metabolic energy expenditure, with a 14% reduction at maximum prosthesis work. In contrast to model predictions, however, collision losses were unchanged, while hip work during swing initiation was decreased. This suggests that powered ankle push-off reduces walking effort primarily through other mechanisms, such as assisting leg swing, which would be better understood using more complete neuromuscular models.
    Scientific Reports 12/2014; 4:7213. DOI:10.1038/srep07213 · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The diagonal limb support pattern at trot provides pitch and roll stability, but little is known about the control of moments about the centre of mass (COM) in horses. Correct COM location is critical in the calculation of pitching moments. The objectives were to determine the effect of COM location on pitching moments in trotting horses and explore how COM location could influence balance. Kinematic (120 Hz) and GRF (4 force plates, 960 Hz) data were collected at trot from three trials of eight horses. The position of the COM was determined from the weighted summation of the segmental COMs and this was then manipulated cranially and caudally to test the model. Sagittal-plane moments around the COM were calculated for each manipulation of the model and their relationship determined using reduced major axis regression. Over the stride, the moments must sum to zero to prevent accumulation of rotational motion. This was found when the weight on the forelimbs in standing was 58.7%±3% (mean±95% C.I.), which corresponded closely to the COP ratio in standing. Moments were typically nose-up at foot strike changing to nose-down prior to midstance, and then reversing to nose-up in late stance. Mean moments were larger in the hindlimbs and more sensitive to COM location changes. Divergence of the COM from the COP creating a vertical force moment arm prior to midstance may assist the hindlimb in relation to propulsive effort. A similar effect is seen in the forelimb during single limb support.
    Journal of Biomechanics 04/2014; DOI:10.1016/j.jbiomech.2014.02.024 · 2.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently the metabolic cost of swinging the limbs has been found to be much greater than previously thought, raising the possibility that limb rotational inertia influences the energetics of locomotion. Larger mammals have a lower mass-specific cost of transport than smaller mammals. The scaling of the mass-specific cost of transport is partly explained by decreasing stride frequency with increasing body size; however, it is unknown if limb rotational inertia also influences the mass-specific cost of transport. Limb length and inertial properties - limb mass, center of mass (COM) position, moment of inertia, radius of gyration, and natural frequency - were measured in 44 species of terrestrial mammals, spanning eight taxonomic orders. Limb length increases disproportionately with body mass via positive allometry (length ∝ body mass(0.40)); the positive allometry of limb length may help explain the scaling of the metabolic cost of transport. When scaled against body mass, forelimb inertial properties, apart from mass, scale with positive allometry. Fore- and hindlimb mass scale according to geometric similarity (limb mass ∝ body mass(1.0)), as do the remaining hindlimb inertial properties. The positive allometry of limb length is largely the result of absolute differences in limb inertial properties between mammalian subgroups. Though likely detrimental to locomotor costs in large mammals, scale effects in limb inertial properties appear to be concomitant with scale effects in sensorimotor control and locomotor ability in terrestrial mammals. Across mammals, the forelimb's potential for angular acceleration scales according to geometric similarity, whereas the hindlimb's potential for angular acceleration scales with positive allometry.
    PLoS ONE 11/2013; 8(11):e78392. DOI:10.1371/journal.pone.0078392 · 3.53 Impact Factor