Article

Immunologic changes in children with egg allergy ingesting extensively heated egg

Department of Pediatrics, Jaffe Food Allergy Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.
The Journal of allergy and clinical immunology (Impact Factor: 11.25). 11/2008; 122(5):977-983.e1. DOI: 10.1016/j.jaci.2008.09.007
Source: PubMed

ABSTRACT Prior studies have suggested that heated egg might be tolerated by some children with egg allergy.
We sought to confirm tolerance of heated egg in a subset of children with egg allergy, to evaluate clinical and immunologic predictors of heated egg tolerance, to characterize immunologic changes associated with continued ingestion of heated egg, and to determine whether a diet incorporating heated egg is well tolerated.
Subjects with documented IgE-mediated egg allergy underwent physician-supervised oral food challenges to extensively heated egg (in the form of a muffin and a waffle), with tolerant subjects also undergoing regular egg challenges (in a form of scrambled egg or French toast). Heated egg-tolerant subjects incorporated heated egg into their diets. Skin prick test wheal diameters and egg white, ovalbumin, and ovomucoid IgE levels, as well as ovalbumin and ovomucoid IgG4 levels, were measured at baseline for all subjects and at 3, 6, and 12 months for those tolerant of heated egg.
Sixty-four of 117 subjects tolerated heated egg, 23 tolerated regular egg, and 27 reacted to heated egg. Heated egg-reactive subjects had larger skin test wheals and greater egg white-specific, ovalbumin-specific, and ovomucoid-specific IgE levels compared with heated egg- and egg-tolerant subjects. Continued ingestion of heated egg was associated with decreased skin test wheal diameters and ovalbumin-specific IgE levels and increased ovalbumin-specific and ovomucoid-specific IgG4 levels.
The majority of subjects with egg allergy were tolerant of heated egg. Continued ingestion of heated egg was well tolerated and associated with immunologic changes that paralleled the changes observed with the development of clinical tolerance to regular egg.

0 Followers
 · 
121 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Food processing can have many beneficial effects. However, processing may also alter the allergenic properties of food proteins. A wide variety of processing methods is available and their use depends largely on the food to be processed. In this review the impact of processing (heat and non-heat treatment) on the allergenic potential of proteins, and on the antigenic (IgG-binding) and allergenic (IgE-binding) properties of proteins has been considered. A variety of allergenic foods (peanuts, tree nuts, cows' milk, hens' eggs, soy, wheat and mustard) have been reviewed. The overall conclusion drawn is that processing does not completely abolish the allergenic potential of allergens. Currently, only fermentation and hydrolysis may have potential to reduce allergenicity to such an extent that symptoms will not be elicited, while other methods might be promising but need more data. Literature on the effect of processing on allergenic potential and the ability to induce sensitisation is scarce. This is an important issue since processing may impact on the ability of proteins to cause the acquisition of allergic sensitisation, and the subject should be a focus of future research. Also, there remains a need to developed robust and integrated methods for the risk assessment of food allergenicity. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The prevalence of pediatric food allergy and anaphylaxis has increased in the last decades, especially in westernized countries where this emerging phenomenon was marked as a “second wave” of the allergic epidemic. Over recent years great advances have been achieved in the field of in vitro allergy testing and component-resolved diagnosis has increasingly entered clinical practice. Testing for allergen components can contribute to a more precise diagnosis by discriminating primary from cross-reactive sensitizations and assessing the risk of severe allergic reactions. The basic concept of the management of food allergy in children is also changing. Avoidance of the offending food is still the mainstay for disease management, especially in primary health care settings, but it severely affects the patients’ quality of life without reducing the risk of accidental allergic reactions. There is a growing body of evidence to show that specific oral tolerance induction can represent a promising treatment option for food allergic patients. In parallel, education of food allergic patients and their caregivers as well as physicians about anaphylaxis and its treatment is becoming recognized a fundamental need. International guidelines have recently integrated these new evidences and their broad application all over Europe represents the new challenge for food allergy specialists.
    Italian Journal of Pediatrics 12/2015; 41(1). DOI:10.1186/s13052-014-0108-0
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to analyze the influence of thermal processing on the IgE binding properties of three forms of peanut, its effects in the content of individual allergens and IgE cross-linking capacity in effector cells of allergy. Three forms of peanut were selected and subjected to thermal processing. Immunoreactivity was evaluated by means of immunoblot or ELISA inhibition assay. Specific antibodies were used to identify changes in the content of the main allergens in peanut samples. The ability of treated peanut to cross-link IgE was evaluated in a basophil activation assay and Skin Prick Testing (SPT). The results showed that thermal/pressure treatments at specific conditions had the capacity to decrease IgE binding properties of protein extracts from peanut. This effect went along with an altered capacity to activate basophils sensitized with IgE from patients with peanut allergy and the wheal size in SPT. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Food Chemistry 09/2015; 183. DOI:10.1016/j.foodchem.2015.03.023 · 3.26 Impact Factor