Article

Magnetic resonance imaging of the hip at 3 Tesla: clinical value in femoroacetabular impingement of the hip and current concepts.

Department of Orthopedic Surgery, University of Berne, Berne, Switzerland.
Seminars in musculoskeletal radiology (Impact Factor: 0.95). 10/2008; 12(3):212-22. DOI: 10.1055/s-0028-1083105
Source: PubMed

ABSTRACT Magnetic resonance imaging (MRI) is the most promising noninvasive modality for hip joint evaluation, but it has limitations in diagnosing cartilage lesion and acetabular labrum changes, especially in early stages. This is significant due to superior outcome results of surgery intervention in hip dysplasia or femoroacetabular impingement in patients not exceeding early degeneration. This emphasizes the need for accurate and reproducible methods in evaluating cartilage structure. In this article, we discuss the impact of the most recent technological advance in MRI, namely the advantage of 3-T imaging, on diagnostic imaging of the hip. Limitations of standard imaging techniques are shown with emphasis on femoroacetabular impingement. Clinical imaging examples and biochemical techniques are presented that need to be further evaluated.

0 Bookmarks
 · 
98 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Advanced MRI cartilage imaging such as T(1)-rho (T1ρ) for the diagnosis of early cartilage degradation prior to morpholgic radiological changes may provide prognostic information in the management of joint disease. This study aimed first to determine the normal T1ρ profile of cartilage within the hip, and secondly to identify any differences in T1ρ profile between the normal and symptomatic femoroacetabular impingement (FAI) hip. Ten patients with cam-type FAI (seven male and three female, mean age 35.9 years (28 to 48)) and ten control patients (four male and six female, mean age 30.6 years (22 to 35)) underwent 1.5T T1ρ MRI of a single hip. Mean T1ρ relaxation times for full thickness and each of the three equal cartilage thickness layers were calculated and compared between the groups. The mean T1ρ relaxation times for full cartilage thickness of control and FAI hips were similar (37.17 ms (SD 9.95) and 36.71 ms (SD 6.72), respectively). The control group demonstrated a T1ρ value trend, increasing from deep to superficial cartilage layers, with the middle third having significantly greater T1ρ relaxation values than the deepest third (p = 0.008). The FAI group demonstrated loss of this trend. The deepest third in the FAI group demonstrated greater T1ρ relaxation values than controls (p = 0.028). These results suggest that 1.5T T1ρ MRI can detect acetabular hyaline cartilage changes in patients with FAI.
    The Bone & Joint Journal 09/2012; 94(9):1187-92. · 2.80 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Advances in computational mechanics, constitutive modeling, and techniques for subject-specific modeling have opened the door to patient-specific simulation of the relationships between joint mechanics and osteoarthritis (OA), as well as patient-specific preoperative planning. This article reviews the application of computational biomechanics to the simulation of joint contact mechanics as relevant to the study of OA. This review begins with background regarding OA and the mechanical causes of OA in the context of simulations of joint mechanics. The broad range of technical considerations in creating validated subject-specific whole joint models is discussed. The types of computational models available for the study of joint mechanics are reviewed. The types of constitutive models that are available for articular cartilage are reviewed, with special attention to choosing an appropriate constitutive model for the application at hand. Issues related to model generation are discussed, including acquisition of model geometry from volumetric image data and specific considerations for acquisition of computed tomography and magnetic resonance imaging data. Approaches to model validation are reviewed. The areas of parametric analysis, factorial design, and probabilistic analysis are reviewed in the context of simulations of joint contact mechanics. Following the review of technical considerations, the article details insights that have been obtained from computational models of joint mechanics for normal joints; patient populations; the study of specific aspects of joint mechanics relevant to OA, such as congruency and instability; and preoperative planning. Finally, future directions for research and application are summarized.
    Journal of Biomechanical Engineering 02/2013; 135(2):021003. · 1.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate 7-T MRI of both hips using a multi-channel transmit technology to compensate for inherent B1 inhomogeneities in volunteers and patients with avascular necrosis of the femoral head. A self-built, eight-channel transmit-receive coil was utilized for B1 modification at 7 T. Two shim modes (individual shim vs. CP2+ mode) were initially compared and the best shim result was used for all further imaging. Robustness of sequences against B1 inhomogeneities, appearance of anatomic and pathologic changes of the femoral heads of MEDIC, DESS, PD/T2w TSE, T1w TSE, and STIR sequences at 7 T were evaluated in 12 subjects on a four-point scale (1-4): four male volunteers and eight patients (seven males, one female) suffering from avascular necrosis treated by advanced core decompression. Successful MRI of both femoral heads was achieved in all 12 subjects. CP2+ mode proved superior in ten of 12 cases. DESS proved most robust against B1 inhomogeneity. Anatomical details (labrum, articular cartilage) were best depicted in PDw, MEDIC, and DESS, while for depiction of pathological changes PDw, DESS (0.76 mm(3)) and T1w were superior. Our initial results of ultra-high-field hip joint imaging demonstrate high-resolution, high-contrast images with a good depiction of anatomic and pathologic changes. However, shifting areas of signal dropout from the femoral heads to the center of the pelvis makes these areas not assessable. For clinical workflow CP2+ mode is most practical. Seven-Tesla MRI of the hip joints may become a valuable complement to clinical field strengths.
    Skeletal Radiology 08/2013; 42(11). · 1.74 Impact Factor