Article

A functional role for 4qA/B in the structural rearrangement of the 4q35 region and in the regulation of FRG1 and ANT1 in facioscapulohumeral dystrophy.

Université Paris-Sud 11, CNRS UMR 8126, Interactions moléculaires et cancer, Institut de Cancérologie Gustave-Roussy, Villejuif, France.
PLoS ONE (Impact Factor: 3.53). 02/2008; 3(10):e3389. DOI: 10.1371/journal.pone.0003389
Source: PubMed

ABSTRACT The number of D4Z4 repeats in the subtelomeric region of chromosome 4q is strongly reduced in patients with Facio-Scapulo-Humeral Dystrophy (FSHD). We performed chromosome conformation capture (3C) analysis to document the interactions taking place among different 4q35 markers. We found that the reduced number of D4Z4 repeats in FSHD myoblasts was associated with a global alteration of the three-dimensional structure of the 4q35 region. Indeed, differently from normal myoblasts, the 4qA/B marker interacted directly with the promoters of the FRG1 and ANT1 genes in FSHD cells. Along with the presence of a newly identified transcriptional enhancer within the 4qA allele, our demonstration of an interaction occurring between chromosomal segments located megabases away on the same chromosome 4q allows to revisit the possible mechanisms leading to FSHD.

0 Bookmarks
 · 
174 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the pathophysiology of facioscapulohumeral dystrophy (FSHD) has been controversial over the last decades, progress in recent years has led to a model that incorporates these decades of findings and is gaining general acceptance in the FSHD research community. Here we review how the contributions from many labs over many years led to an understanding of a fundamentally new mechanism of human disease. FSHD is caused by inefficient repeat-mediated epigenetic repression of the D4Z4 macrosatellite repeat array on chromosome 4, resulting in the variegated expression of the DUX4 retrogene, encoding a double-homeobox transcription factor, in skeletal muscle. Normally expressed in the testis and epigenetically repressed in somatic tissues, DUX4 expression in skeletal muscle induces expression of many germline, stem cell, and other genes that might account for the pathophysiology of FSHD. Although some disagreements regarding the details of mechanisms remain in the field, the coalescing agreement on a central model of pathophysiology represents a pivot-point in FSHD research, transitioning the field from discovery-oriented studies to translational studies aimed at developing therapies based on a sound model of disease pathophysiology.
    06/2014; 4:12. DOI:10.1186/2044-5040-4-12
  • [Show abstract] [Hide abstract]
    ABSTRACT: Facioscapulohumeral muscular dystrophy (FSHD) is linked to epigenetic dysregulation of the chromosome 4q35 D4Z4 macrosatellite. However, this does not account for the tissue specificity of FSHD pathology, which requires stable expression of DUX4-fl mRNA from the D4Z4 array in skeletal muscle. Here we describe the identification of two enhancers, DUX4 Myogenic Enhancer 1 (DME1) and 2 (DME2) which activate DUX4-fl expression in skeletal myocytes, but not fibroblasts. Analysis of the chromatin revealed histone modifications and RNA Polymerase II occupancy consistent with DME1 and DME2 being functional enhancers. Chromosome conformation capture analysis confirmed association of DME1 and DME2 with the DUX4 promoter in vivo. The strong interaction between DME2 and the DUX4 promoter in both FSHD and unaffected primary myocytes was greatly reduced in fibroblasts, suggesting a muscle-specific interaction. Nucleosome occupancy and methylome sequencing analysis indicated that in most FSHD myocytes, both enhancers are associated with nucleosomes, but have hypomethylated DNA, consistent with a permissive transcriptional state, sporadic occupancy, and the observed DUX4 expression in rare myonuclei. Our data support a model in which these myogenic enhancers associate with the DUX4 promoter in skeletal myocytes and activate transcription when epigenetically de-repressed in FSHD, resulting in the pathological misexpression of DUX4-fl.
    Molecular and Cellular Biology 03/2014; 34(11). DOI:10.1128/MCB.00149-14 · 5.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Facioscapulohumeral muscular dystrophy (FSHD) is a progressive myopathy with a relatively late age of onset (usually in the late teens) compared with Duchenne and many other muscular dystrophies. The current FSHD disease model postulates that contraction of the D4Z4 array at chromosome 4q35 leads to a more open chromatin conformation in that region and allows transcription of the DUX4 gene. DUX4 mRNA is stable only when transcribed from certain haplotypes that contain a polyadenylation signal. DUX4 protein is hypothesized to cause FSHD by mediating cytotoxicity and impairing skeletal muscle differentiation. We recently showed in a cell culture model that DUX4 expression is regulated by telomere length, suggesting that telomere shortening during aging may be partially responsible for the delayed onset and progressive nature of FSHD. We here put our data in the context of other recent findings arguing that progressive telomere shortening may play a critical role in FSHD but is not the whole story and that the current disease model needs additional refinement.

Full-text (2 Sources)

Download
36 Downloads
Available from
May 19, 2014