cAMP-mediated beta-adrenergic signaling negatively regulates Gq-coupled receptor-mediated fetal gene response in cardiomyocytes.

Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.
Journal of Molecular and Cellular Cardiology (Impact Factor: 5.22). 10/2008; 45(6):761-9. DOI: 10.1016/j.yjmcc.2008.09.120
Source: PubMed

ABSTRACT The treatment with beta-blockers causes an enhancement of the norepinephrine-induced fetal gene response in cultured cardiomyocytes. Here, we tested whether the activation of cAMP-mediated beta-adrenergic signaling antagonizes alpha(1)-adrenergic receptor (AR)-mediated fetal gene response. To address this question, the fetal gene program, of which atrial natriuretic peptide (ANP) and the beta-isoform of myosin heavy chain are classical members, was induced by phenylephrine (PE), an alpha(1)-AR agonist. In cultured neonatal rat cardiomyocytes, we found that stimulation of beta-ARs with isoproterenol, a beta-AR agonist, inhibited the fetal gene expression induced by PE. Similar results were also observed when cardiomyocytes were treated with forskolin (FSK), a direct activator of adenylyl cyclase, or 8-CPT-6-Phe-cAMP, a selective activator of protein kinase A (PKA). Conversely, the PE-induced fetal gene expression was further upregulated by H89, a selective PKA inhibitor. To evaluate whether these results could be generalized to Gq-mediated signaling and not specifically to alpha(1)-ARs, cardiomyocytes were treated with prostaglandin F(2)alpha, another Gq-coupled receptor agonist, which is able to promote fetal gene expression. This treatment caused an increase of both ANP mRNA and protein levels, which was almost completely abolished by FSK treatment. The capability of beta-adrenergic signaling to regulate the fetal gene expression was also evaluated in vivo conditions by using beta1- and beta2-AR double knockout mice, in which the predominant cardiac beta-AR subtypes are lacking, or by administering isoproterenol (ISO), a beta-AR agonist, at a subpressor dose. A significant increase of the fetal gene expression was found in beta(1)- and beta(2)-AR gene deficient mice. Conversely, we found that ANP, beta-MHC and skACT mRNA levels were significantly decreased in ISO-treated hearts. Collectively, these data indicate that cAMP-mediated beta-adrenergic signaling negatively regulates Gq cascade activation-induced fetal gene expression in cultured cardiomyocytes and that this inhibitory regulation is already operative in the mouse heart under physiological conditions.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian heart expresses two closely related natriuretic peptide (NP) hormones, atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP). The excretion of the NPs and the expression of their genes strongly respond to a variety of cardiovascular disorders. NPs act to increase natriuresis and decrease vascular resistance, thereby decreasing blood volume, systemic blood pressure and afterload. Plasma levels of BNP are used as diagnostic and prognostic markers for hypertrophy and heart failure (HF), and both ANF and BNP are widely used in biomedical research to assess the hypertrophic response in cell culture or the development of HF related diseases in animal models. Moreover, ANF and BNP are used as specific markers for the differentiating working myocardium in the developing heart, and the ANF promoter serves as platform to investigate gene regulatory networks during heart development and disease. However, despite decades of research, the mechanisms regulating the NP genes during development and disease are not well understood. Here we review current knowledge on the regulation of expression of the genes for ANF and BNP and their role as biomarkers, and give future directions to identify the in vivo regulatory mechanisms. This article is part of a Special Issue entitled: Heart failure pathogenesis and emerging diagnostic and therapeutic interventions.
    Biochimica et Biophysica Acta 07/2013; 1832(12). DOI:10.1016/j.bbadis.2013.07.003 · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: During heart development chamber specification is controlled and directed by a number of genes and a fetal heart gene expression pattern is revisited during heart failure. In the setting of chronic pulmonary hypertension the right ventricle undergoes hypertrophy, which is likely initially adaptive, but often followed by decompensation, dilatation and failure. Here we discuss differences between the right ventricle and the left ventricle of the heart and begin to describe the cellular and molecular changes which characterize right heart failure. A prevention and treatment of right ventricle failure becomes a treatment goal for patients with severe pulmonary hypertension it follows that we need to understand the pathobiology of right heart hypertrophy and the transition to right heart failure. © 2011 American Physiological Society. Compr Physiol 1:525-540, 2011.
    01/2011; 1(1):525-40. DOI:10.1002/cphy.c090008
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the influence of sex-hormones on the expression of a- and b-cardiac myosin heavy chain isoforms (a-MHC and b-MHC) in C57bl/6 mice of both sexes, under physiological and pathological conditions. In the left ventricles of fertile female mice, b-MHC expression were 10 fold higher compared to the age-matched males, whereas no differences were found in the a-MHC expression. These differences disappeared after ovariectomy or in sexually immature mice. We also found a sex-related difference in expression of b1-adrenoceptors (b1-AR), since mRNA levels of this gene were 40% lower in fertile females compared to males of the same age, but did not differ in prepuberal or ovariectomized animals. Interestingly, the deletion of both b1- and b2-AR abolished sex difference in the b-MHC expression , since mRNA levels in knockout males were increased and reached values comparable to those of knockout females. Moreover, the b1-AR antagonist metoprolol induced about three-fold increase of b-MHC expression in male mice. The capability of gender to regulate b-MHC expression was also evaluated in the presence of hemodynamic load. Thoracic aortic coarctation (TAC) produced cardiac hypertrophy along with a 12 fold increase of b-MHC and a 50% decrease of b1AR expression in males but not in females, thus abolishing the gender difference observed in sham animals for such genes. In conclusion our results show that the expression of b-MHC and b1-AR in the left ventricles undergo gender-related and correlated changes under both physiological and pathological conditions, and suggest a role of b1-adrenoceptor-mediated signalling.
    Journal of Endocrinology 11/2012; DOI:10.1530/JOE-12-0201 · 3.59 Impact Factor