Global Warming, Elevational Range Shifts, and Lowland Biotic Attrition in the Wet Tropics

Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.
Science (Impact Factor: 33.61). 11/2008; 322(5899):258-61. DOI: 10.1126/science.1162547
Source: PubMed


Many studies suggest that global warming is driving species ranges poleward and toward higher elevations at temperate latitudes,
but evidence for range shifts is scarce for the tropics, where the shallow latitudinal temperature gradient makes upslope
shifts more likely than poleward shifts. Based on new data for plants and insects on an elevational transect in Costa Rica,
we assess the potential for lowland biotic attrition, range-shift gaps, and mountaintop extinctions under projected warming.
We conclude that tropical lowland biotas may face a level of net lowland biotic attrition without parallel at higher latitudes
(where range shifts may be compensated for by species from lower latitudes) and that a high proportion of tropical species
soon faces gaps between current and projected elevational ranges.

Download full-text


Available from: Gunnar Brehm, Oct 01, 2015
165 Reads
  • Source
    • "Acclimation is not the only requisite for surviving drastic and/or rapid climate changes. A key issue when considering the viability of species in changing climates is whether species can still be competitive in novel species assemblages created by climate change, i.e., current lower elevation species migrating to higher elevations (Colwell et al., 2008; Smith et al., 2009). Large tracts of un-fragmented rain forest in well-established conservation areas surround and include each of the mountaintops in our study. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Species inhabiting tropical mountaintops may be most at risk from the detrimental effects of climate change. Yet few regional assessments have critically assessed the degree of threat to species in these habitats. Here we model under three climate scenarios the current and future suitable climate niche of 19 plant species endemic to tropical mountaintops in northeast Queensland, Australia. The suitable climate niche for each of the 19 species is predicted to decline by a minimum of 17% and maximum of 100% by 2040 (mean for all species of 81%) and minimum of 46% (mean for all species of 95%) by 2080. Seven species are predicted to have some suitable climate niche space reductions (ranging from 1 to 54% of their current suitable area) by 2080 under all three climate scenarios. Three additional species are projected to retain between 0.1 and 9% of their current distribution under one or two of the climate scenarios. In addition to these declines, which are predicted to occur over the next 30 years in northeast Queensland, we discuss and outline pressing research priorities that may be relevant for the conservation of biodiversity on tropical mountaintop environments across the globe. Specifically, further research is needed on thermal tolerances, acclimation potentials, and physiological constraints of tropical mountaintop taxa as current species distributions are primarily determined by climatic factors.
    Biological Conservation 11/2015; 191:322-330. DOI:10.1016/j.biocon.2015.07.022 · 3.76 Impact Factor
    • "There is strong evidence that latitudinal shifts (poleward) and elevation shifts (upward) of climatic conditions correspond to similar shifts in the distributions of both plant and animal species [Parmesan, 2006; Wilson et al., 2005]. In the tropics, however, range shifts related to climate change are predicted to be primarily upward along elevation gradients [Colwell et al., 2008]. In addition to the range shifts predicted from climate change, anthropogenic habitat loss is focused primarily on lowland Contract grant sponsor: Primate Conservation, Inc.; contract grant sponsor: ExxonMobil Foundation habitats, leaving much of the suitable habitat at higher altitudes [Sekercio glu et al., 2008]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Variation in the quality and availability of food resources can greatly influence the ecology, behavior, and conservation of wild primates. We studied the influence of altitudinal differences in resource availability on diet in wild drill monkeys (Mandrillus leucophaeus poensis) on Bioko Island, Equatorial Guinea. We compared fecal samples (n = 234) collected across three consecutive dry seasons for drills living in lowland (0–300 m asl) forest with nearby (18 km distance) drills living in montane forest (500–1000 m asl) in the Gran Caldera Southern Highlands Scientific Reserve. Lowland forest drills had a frugivorous diet very similar to that reported from studies on nearby mainland drills (M. l. leucophaeus) and mandrills (M. sphinx), with fruits comprising 90% of their dried fecal samples. However drills living in montane forest had a more folivorous diet, with herbaceous pith, leaves and fungi comprising 74% of their dried fecal samples and fruit becoming a minor component (24%). Furthermore, a dietary preference index indicated that the differences in the proportion of fruit and fibrous vegetation in the diets of lowland compared to montane drills was not simply a result of relative availability. Montane drills were actively consuming a higher mass of the available fruits and fibrous vegetation, a condition reflected in the greater mass of their fresh feces. Our results demonstrate the unexpected flexibility and complexity of dietary choices of this endangered species in two adjacent habitat types, a comparison of considerable importance for many other limited-range species faced with habitat loss and climate change.
    American Journal of Primatology 09/2015; DOI:10.1002/ajp.22479 · 2.44 Impact Factor
  • Source
    • "If temperature increases in lowland forest are sufficient to affect reproduction and survival of many species, then populations could certainly decline, particularly given that there would be little opportunity to move to higher elevations or latitudes (see Colwell et al., 2008). Global temperature has apparently increased at a rate of ∼0.2 • C/decade since 1975 (Hansen et al., 2006) with an increase of ∼0.25 • C/decade in lowland tropics (cited in Colwell et al., 2008). If correct, then we might expect to see increases of ∼0.12 to ∼0.15 • C during 5–7 years (i.e., from 2008 to 2014). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Bird populations have declined in many parts of the world but most of those declines can be attributed to effects of human activities (e.g., habitat fragmentation); declines in areas unaffected by human activities are not common. We have been sampling bird populations at an undisturbed site in lowland forest of eastern Ecuador annually since 2001 using a combination of mist nets and direct observations on two 100-ha plots. Bird numbers fluctuated on both plots during the first 8 years but did not show a consistent pattern of change. Since about 2008, numbers of birds on both plots have declined; capture rates in 2014 were ∼40% less than at the start of the study and observation rates were ∼50% less. Both understory and canopy species declined in abundance. Overall, insectivores showed the most pronounced declines but declines varied among trophic groups. The period from 2008 onward also was a period of stronger La Niña events which, at this study site, are associated with increased rainfall. The mechanism for the declines is not known but likely reflects a combination of reduced reproductive success coupled with reduced survival associated with changing climate.
    PeerJ 08/2015; 3. DOI:10.7717/peerj.1177 · 2.11 Impact Factor
Show more