Article

Transcriptome of Geobacter uraniireducens growing in uranium-contaminated subsurface sediments.

Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA.
The ISME Journal (Impact Factor: 8.95). 11/2008; 3(2):216-30. DOI: 10.1038/ismej.2008.89
Source: PubMed

ABSTRACT To learn more about the physiological state of Geobacter species living in subsurface sediments, heat-sterilized sediments from a uranium-contaminated aquifer in Rifle, Colorado, were inoculated with Geobacter uraniireducens, a pure culture representative of the Geobacter species that predominates during in situ uranium bioremediation at this site. Whole-genome microarray analysis comparing sediment-grown G. uraniireducens with cells grown in defined culture medium indicated that there were 1084 genes that had higher transcript levels during growth in sediments. Thirty-four c-type cytochrome genes were upregulated in the sediment-grown cells, including several genes that are homologous to cytochromes that are required for optimal Fe(III) and U(VI) reduction by G. sulfurreducens. Sediment-grown cells also had higher levels of transcripts, indicative of such physiological states as nitrogen limitation, phosphate limitation and heavy metal stress. Quantitative reverse transcription PCR showed that many of the metabolic indicator genes that appeared to be upregulated in sediment-grown G. uraniireducens also showed an increase in expression in the natural community of Geobacter species present during an in situ uranium bioremediation field experiment at the Rifle site. These results demonstrate that it is feasible to monitor gene expression of a microorganism growing in sediments on a genome scale and that analysis of the physiological status of a pure culture growing in subsurface sediments can provide insights into the factors controlling the physiology of natural subsurface communities.

0 Bookmarks
 · 
78 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microbial community structure, and niche and neutral processes can all influence response to disturbance. Here, we provide experimental evidence for niche versus neutral and founding community effects during a bioremediation-related organic carbon disturbance. Subsurface sediment, partitioned into 22 flow-through columns, was stimulated in situ by the addition of acetate as a carbon and electron donor source. This drove the system into a new transient biogeochemical state characterized by iron reduction, and enriched Desulfuromonadales, Comamonadaceae and Bacteroidetes lineages. After approximately one month conditions favored sulfate reduction, and were accompanied by a substantial increase in the relative abundance of Desulfobulbus, Desulfosporosinus, Desulfitobacterium and Desulfotomaculum. Two subsets of four-to-five columns each were switched from acetate to lactate amendment during either iron (earlier) or sulfate (later) reduction. Hence, subsets had significantly different founding communities. All lactate treatments exhibited lower relative abundances of Desulfotomaculum and Bacteroidetes, enrichments of Clostridiales and Psychrosinus species, and a temporal succession from highly abundant Clostridium sensu stricto to Psychrosinus. Regardless of starting point, lactate-switch communities followed comparable structural trajectories whereby convergence was evident 9-16 days after each switch, and significant after 29-34 days of lactate addition. Results imply that neither the founding community nor neutral processes influenced succession following perturbation.
    Environmental Microbiology 03/2014; · 6.24 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: L. pneumophila is an intracellular pathogen that replicates in a membrane-bound compartment known as the Legionella-containing vacuole (LCV). We previously observed that the polyamine spermidine, produced by host cells or added exogenously, enhances the intracellular growth of L. pneumophila. To study this enhancing effect and determine whether polyamines are used as nutrients, we deleted potD from L. pneumophila strain JR32. The gene potD encodes a spermidine-binding protein that in other bacteria is essential for the function of the PotABCD polyamine transporter. Deletion of potD did not affect L. pneumophila growth in vitro in the presence or absence of spermidine and putrescine, suggesting that PotD plays a redundant or no role in polyamine uptake. However, deletion of potD resulted in a puzzlingly complex phenotype that included defects in L. pneumophila's ability to form filaments, tolerate Na+, associate with macrophages and amoeba, recruit host vesicles to the LCV, and initiate intracellular growth. Moreover, the ΔpotD mutant was completely unable to grow in L929 cells treated with a pharmacological inhibitor of spermidine synthesis. These complex and disparate effects suggest that the L. pneumophila potD encodes either: i) a multifunctional protein, ii) a protein that interacts with, or regulates a, multifunctional protein, or iii) a protein that contributes (directly or indirectly) to a regulatory network. Protein function studies with the L. pneumophila PotD protein are thus warranted.
    International Journal of Medical Microbiology 07/2014; · 3.42 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The strict anaerobe Geobacter metallireducens was cultivated in retentostats under acetate and acetate plus benzoate limitation in the presence of Fe(III) citrate in order to investigate its physiology under close to natural conditions. Growth rates below 0.003 h−1 were achieved in the course of cultivation. A nano-liquid chromatography–tandem mass spectrometry-based proteomic approach (nano-LC–MS/MS) with subsequent label-free quantification was performed on proteins extracted from cells sampled at different time points during retentostat cultivation. Proteins detected at low (0.002 h−1) and high (0.06 h−1) growth rates were compared between corresponding growth conditions (acetate or acetate plus benzoate). Carbon limitation significantly increased the abundances of several catabolic proteins involved in the degradation of substrates not present in the medium (ethanol, butyrate, fatty acids, and aromatic compounds). Growth rate-specific physiology was reflected in the changed abundances of energy-, chemotaxis-, oxidative stress-, and transport-related proteins. Mimicking natural conditions by extremely slow bacterial growth allowed to show how G. metallireducens optimized its physiology in order to survive in its natural habitats, since it was prepared to consume several carbon sources simultaneously and to withstand various environmental stresses.
    Systematic and Applied Microbiology 06/2014; · 3.31 Impact Factor

Preview

Download
0 Downloads
Available from