Article

Effects of topiramate and other anti-glutamatergic drugs on the acute intoxicating actions of ethanol in mice: modulation by genetic strain and stress

Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology (Impact Factor: 7.83). 11/2008; 34(6):1454-66. DOI: 10.1038/npp.2008.182
Source: PubMed

ABSTRACT Compounds with anti-glutamatergic properties currently in clinical use for various indications (eg Alzheimer's disease, epilepsy, psychosis, mood disorders) have potential utility as novel treatments for alcoholism. Enhanced sensitivity to certain acute intoxicating effects (ataxia, sedative) of alcohol may be one mechanism by which anti-glutamatergic drugs modulate alcohol use. We examined the effects of six compounds (memantine, dextromethorphan, haloperidol, lamotrigine, oxcarbazepine, and topiramate) on sensitivity to acute intoxicating effects of ethanol (ataxia, hypothermia, sedation/hypnosis) in C57BL/6J mice. Analysis of topiramate was extended to determine the influence of genetic background (by comparison of the 129S1, BALB/cJ, C57BL/6J, DBA/2J inbred strains) and prior stress history (by chronic exposure of C57BL/6J to swim stress) on topiramate's effects on ethanol-induced sedation/hypnosis. Results showed that one N-methyl-D-aspartate receptor (NMDAR) antagonist, memantine, but not another, dextromethorphan, potentiated the ataxic but not hypothermic or sedative/hypnotic effects of ethanol. Haloperidol increased ethanol-induced ataxia and sedation/hypnosis to a similar extent as the prototypical NMDAR antagonist MK-801. Of the anticonvulsants tested, lamotrigine accentuated ethanol-induced sedation/hypnosis, whereas oxcarbazepine was without effect. Topiramate was without effect per se under baseline conditions in C57BL/6J, but had a synergistic effect with MK-801 on ethanol-induced sedation/hypnosis. Comparing inbred strains, topiramate was found to significantly potentiate ethanol's sedative/hypnotic effects in BALB/cJ, but not 129S1, C57BL/6J, or DBA/2J strains. Topiramate also increased ethanol-induced sedation/hypnosis in C57BL/6J after exposure to chronic stress exposure. Current data demonstrate that with the exception of MK-801 and haloperidol, the compounds tested had either no significant or assay-selective effects on sensitivity to acute ethanol under baseline conditions in C57BL/6J. However, significant effects of topiramate were revealed as a function of co-treatment with an NMDAR blocker, genetic background, or prior stress history. These findings raise the possibility that topiramate and possibly other anti-glutamatergic drugs could promote the acute intoxicating effects of ethanol in specific subpopulations defined by genetics or life history.

0 Followers
 · 
91 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: IntroductionDopamine replacement therapy for Parkinson’s disease (PD) was recently linked to the development of impulse control disorders such as pathological gambling (PG), hypersexuality, compulsive shopping, and binge or compulsive eating. Antiglutamatergic agents including amantadine (Ama) reduce these behaviors in PD and non-PD patients. The aim of our study is to evaluate the changes in executive functions, emotions, and reward/loss processing during Ama treatment in PD patients.MethodsThirty-three patients affected by idiopathic PD were selected from a cohort of 1,096 PD patients and categorized in three different groups: ten affected by PG (PD-PG); nine PD patients with other impulse control disorder (PD-ICD); and 14 PD patient without any psychiatric disorder (PD-CTR-controls). For the neuropsychological evaluation, the following behavioral tasks where administered: the Stroop, the emotional Stroop, and the monetary reward/loss risk-taking tasks.ResultsDuring Ama treatment, PD-PGs showed a decrease in risky choices and an increase in non-risky choices (t(9)=−2.40, P<0.05 and t(9)=2,67, P<0.05 uncorrected, respectively). Between-group comparison showed a significant decrease in risky choices for PD-PG with respect to PD-CTR (t(22)=−4.16, P<0.01), and a decreased accuracy for positive words in comparison between PD-PG and PD-ICD (t(17)=−7,49, P<0.01) and PD-PG and PD-CTR (t(22)=−4.29, P<0.01). No within- and between-group differences were observed for Stroop task.DiscussionOur data showed that Ama add-on therapy reduces hypersensitivity to reward and sustains activation toward uncertainty in PD-PG patients. These finding might explain the behavioral mechanism underlying the effect of antiglutamatergic drugs.
    Neuropsychiatric Disease and Treatment 06/2014; 10:1093-101. DOI:10.2147/NDT.S54423 · 2.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The neural factors underlying individual differences in susceptibility to chronic stress remain poorly understood. Preclinical studies demonstrate that mouse strains vary greatly in anxiety-related responses to chronic stress in a manner paralleled by differential stress-induced changes in glutamatergic signaling in the basolateral amygdala (BLA). Previous work has also shown that alterations in the amygdala gene expression of the GluN1 NMDA and the GluK1 kainate receptors are associated with stress-induced alterations in anxiety-like behavior in the C57BL/6J mouse strain. Using in vivo behavioral pharmacological and ex vivo physiological approaches, the aim of the current study was to further elucidate changes in glutamate neurotransmission in the BLA caused by stress and to test the functional roles of GluN1 and GluK1 in mediating stress-related changes in behavior. Results showed that stress-induced alterations in anxiety-like behavior (light/dark exploration test) were absent following bilateral infusion of the GluK1 agonist ATPA into the BLA. Intra-BLA infusion of the competitive NMDA antagonist AP5 produced a generalized behavioral disinhibition/locomotor hyperactivity, irrespective of stress. Slice electrophysiological recordings showed that ATPA augmented BLA GABAergic neurotransmission and that stress increased the amplitude of network-dependent spontaneous excitatory postsynaptic currents and amplitude of GABAergic miniature inhibitory postsynaptic currents in BLA. These findings could indicate stress-induced BLA glutamatergic neuronal network hyperexcitability and a compensatory increase in GABAergic neurotransmission, suggesting that GluK1 agonism augmented GABAergic inhibition to prevent behavioral sequelae of stress. Current data could have implications for developing novel therapeutic approaches, including GluK1 agonists, for stress-related anxiety disorders.
    Neuropharmacology 05/2014; 85. DOI:10.1016/j.neuropharm.2014.04.015 · 4.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The neural and genetic factors underlying chronic tolerance to alcohol are currently unclear. The GluN2A N-methyl-D-aspartate receptors (NMDAR) subunit and the NMDAR-anchoring protein PSD-95 mediate acute alcohol intoxication and represent putative mechanisms mediating tolerance. We found that chronic intermittent ethanol exposure (CIE) did not produce tolerance [loss of righting reflex (LORR)] or withdrawal-anxiety in C57BL/6J, GluN2A or PSD-95 knockout mice assayed 2-3 days later. However, significant tolerance to LORR was evident 1 day after CIE in C57BL/6J and PSD-95 knockouts, but absent in GluN2A knockouts. These data suggest a role for GluN2A in tolerance, extending evidence that human GluN2A gene variation is involved in alcohol dependence.
    Addiction Biology 01/2014; 20(2). DOI:10.1111/adb.12110 · 5.93 Impact Factor

Preview (3 Sources)

Download
0 Downloads
Available from