Ca2+-regulated pool of phosphatidylinositol-3-phosphate produced by phosphatidylinositol 3-kinase C2alpha on neurosecretory vesicles.

Molecular Dynamics of Synaptic Function Laboratory, Queensland Brain Institute and School of Biomedical Sciences, The University of Queensland, St. Lucia, 4072 Queensland, Australia.
Molecular biology of the cell (Impact Factor: 5.98). 11/2008; 19(12):5593-603. DOI: 10.1091/mbc.E08-06-0595
Source: PubMed

ABSTRACT Phosphatidylinositol-3-phosphate [PtdIns(3)P] is a key player in early endosomal trafficking and is mainly produced by class III phosphatidylinositol 3-kinase (PI3K). In neurosecretory cells, class II PI3K-C2alpha and its lipid product PtdIns(3)P have recently been shown to play a critical role during neuroexocytosis, suggesting that two distinct pools of PtdIns(3)P might coexist in these cells. However, the precise characterization of this additional pool of PtdIns(3)P remains to be established. Using a selective PtdIns(3)P probe, we have identified a novel PtdIns(3)P-positive pool localized on secretory vesicles, sensitive to PI3K-C2alpha knockdown and relatively resistant to wortmannin treatment. In neurosecretory cells, stimulation of exocytosis promoted a transient albeit large increase in PtdIns(3)P production localized on secretory vesicles sensitive to PI3K-C2alpha knockdown and expression of PI3K-C2alpha catalytically inactive mutant. Using purified chromaffin granules, we found that PtdIns(3)P production is controlled by Ca(2+). We confirmed that PtdIns(3)P production from recombinantly expressed PI3K-C2alpha is indeed regulated by Ca(2+). We provide evidence that a dynamic pool of PtdIns(3)P synthesized by PI3K-C2alpha occurs on secretory vesicles in neurosecretory cells, demonstrating that the activity of a member of the PI3K family is regulated by Ca(2+) in vitro and in living neurosecretory cells.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphoinositides are key players in many trafficking and signaling pathways. Recent advances regarding the synthesis, location and functions of these lipids have dramatically improved our understanding of how and when these lipids are generated and what their roles are in animal physiology. In particular, phosphoinositides play a central role in insulin signaling, and manipulation of PtdIns(3,4,5)P3 levels in particular, may be an important potential therapeutic target for the alleviation of insulin resistance associated with obesity and the metabolic syndrome. In this article we review the metabolism, regulation and functional roles of phosphoinositides in insulin signaling and the regulation of energy metabolism. This article is part of a Special Issue entitled Phosphoinositides.
    Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 11/2014; · 4.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: How neurosecretory cells spatially adjust their secretory vesicle pools to replenish those that have fused and released their hormonal content is currently unknown. Here we designed a novel set of image analyses to map the probability of tracked organelles undergoing a specific type of movement (free, caged or directed). We then applied our analysis to time-lapse z-stack confocal imaging of secretory vesicles from bovine Chromaffin cells to map the global changes in vesicle motion and directionality occurring upon secretagogue stimulation. We report a defined region abutting the cortical actin network that actively transports secretory vesicles and is dissipated by actin and microtubule depolymerizing drugs. The directionality of this "conveyor belt" towards the cell surface is activated by stimulation. Actin and microtubule networks therefore cooperatively probe the microenvironment to transport secretory vesicles to the periphery, providing a mechanism whereby cells globally adjust their vesicle pools in response to secretagogue stimulation.
    PLoS ONE 01/2014; 9(1):e87242. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we present findings that suggest that PI3K-C2α, a member of the class II phosphoinositide 3-kinase (PI3K) subfamily, regulates the process of FcεRI-triggered degranulation. RBL-2H3 cells were transfected with shRNA targeting PI3K-C2α. The knockdown impaired the FcεRI-induced release of a lysosome enzyme, β-hexosaminidase, without affecting the intracellular Ca2+ mobilization. The release of mRFP-tagged neuropeptide-Y, a reporter for the regulated exocytosis, was also decreased in the PI3K-C2α-deficient cells. The release was increased significantly by the expression of the siRNA-resistant version of PI3K-C2α. In wild-type cells, FcεRI stimulation induced the formation of large vesicles, which were associated with CD63, a marker protein of secretory granules. On the vesicles, the existence of PI3K-C2α and PtdIns(3,4)P2 was observed. These results indicated that PI3K-C2α and its product PtdIns(3,4)P2 may play roles in the secretory process.
    PLoS ONE 10/2014; 9(10):e111698. · 3.53 Impact Factor


Available from
May 17, 2014