Comparison of dual-energy X-ray absorptiometry and magnetic resonance imaging-measured adipose tissue depots in HIV-infected and control subjects.

University of California, San Francisco, CA 94121, USA.
American Journal of Clinical Nutrition (Impact Factor: 6.92). 10/2008; 88(4):1088-96.
Source: PubMed

ABSTRACT Studies in persons without HIV infection have compared adipose tissue measured by dual-energy X-ray absorptiometry (DXA) and magnetic resonance imaging (MRI), but no such study has been conducted in HIV-infected (HIV+) subjects, who have a high prevalence of regional fat loss.
We compared DXA- with MRI-measured trunk, leg, arm, and total fat in HIV+ and control subjects.
A cross-sectional analysis was conducted in 877 HIV+ subjects and 260 control subjects in FRAM (Study of Fat Redistribution and Metabolic Change in HIV Infection), stratified by sex and HIV status.
Univariate associations of DXA with MRI were strongest for total and trunk fat (r > or = 0.92) and slightly weaker for leg (r > or = 0.87) and arm (r > or = 0.71) fat. The average estimated limb fat was substantially greater for DXA than for MRI for HIV+ and control men and women (all P < 0.0001). Less of a difference was observed in trunk fat measured by DXA and MRI, but the difference was still statistically significant (P < 0.0001). Bland-Altman plots showed increasing differences and variability. Greater average limb fat in control and HIV+ subjects (both P < 0.0001) was associated with greater differences between DXA and MRI measurements. Because the control subjects had more limb fat than did the HIV+ subjects, greater amounts of fat were measured by DXA than by MRI when control subjects were compared with HIV+ subjects. More HIV+ subjects had leg fat in the bottom decile of the control subjects by DXA than by MRI (P < 0.0001).
Although DXA- and MRI-measured adipose tissue depots correlate strongly in HIV+ and control subjects, differences increase as average fat increases, particularly for limb fat. DXA may estimate a higher prevalence of peripheral lipoatrophy than does MRI in HIV+ subjects.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background/Objectives:New methods to measure visceral adipose tissue (VAT) by dual-energy X-ray absorptiometry (DXA) may help discern sex, race and phenotype differences in the role of VAT in cardiometabolic risk. This study was designed (1) to compare relationships of DXA-VAT, anthropometric and body composition variables with cardiometabolic risk factors in obese women; (2) to determine which variables most robustly predict impaired glucose tolerance (IGT) and metabolic syndrome (MetSx); and (3) to determine thresholds for DXA-VAT by race.Subjects/Methods:VAT mass (g) and volume (cm(3)) were measured in 229 obese (body mass index (BMI), 30-49.9) women aged 21-69 years of European-American (EA=123) and African-American (AA=106) descent using the CoreScan algorithm on a Lunar iDXA scanner. Linear regression modeling and areas under the curve (AUC of ROC (receiver operating characteristic) curves) compared relationships with cardiometabolic risk. Bootstrapping with LASSO (least absolute shrinkage and selection operator) regression modeling determined thresholds and predictors of IGT and MetSx.Results:DXA-VAT explained more of the variance in triglycerides, blood pressure, glucose and homeostatic model assessment-insulin resistance (HOMA-IR) compared with anthropometric and other body composition variables. DXA-VAT also had the highest AUC for IGT (0.767) and MetSx (0.749). Including race as a variable and the interaction between VAT and race in modeling did not significantly change the results. Thresholds at which the probability of developing IGT or MetSx was⩾50% were determined separately for AA women (IGT: 2120 cm(3); MetSx: 1320 cm(3)) and EA women (IGT: 2550 cm(3); MetSx: 1713 cm(3)). The odds for IGT or MetSx were fourfold greater with each standard deviation increase in DXA-VAT.Conclusions:DXA-VAT provides robust clinical information regarding cardiometabolic risk in AA and EA obese women and offers potential utility in the risk reduction interventions.European Journal of Clinical Nutrition advance online publication, 22 October 2014; doi:10.1038/ejcn.2014.227.
    European Journal of Clinical Nutrition 10/2014; DOI:10.1038/ejcn.2014.227 · 2.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dual-energy x-ray absorptiometry (DXA) measurements of body composition increasingly are used in the evaluation of clinical disorders, but there has been little guidance on how to effectively report these measures. Uniformity in reporting of body composition measures will aid in the diagnosis of clinical disorders such as obesity, sarcopenia, and lipodystrophy. At the 2013 International Society for Clinical Densitometry Position Development Conference on body composition, the reporting section recommended that all DXA body composition reports should contain parameters of body mass index, bone mineral density, BMC, total mass, total lean mass, total fat mass, and percent fat mass. The inclusion of additional measures of adiposity and lean mass are optional, including visceral adipose tissue, appendicular lean mass index, android/gynoid percent fat ratio, trunk to leg fat mass ratio, lean mass index, and fat mass index. Within the United States, we recommend the use of the National Health and Nutrition Examination Survey 1999-2004 body composition dataset as an age-, gender-, and race-specific reference and to calibrate BMC in 4-compartment models. Z-scores and percentiles of body composition measures may be useful for clinical interpretation if methods are used to adjust for non-normality. In particular, DXA body composition measures may be useful for risk-stratification of obese and sarcopenic patients, but there needs to be validation of thresholds to define obesity and sarcopenia. To summarize, these guidelines provide evidence-based standards for the reporting and clinical application of DXA-based measures of body composition.
    Journal of Clinical Densitometry 10/2013; 16(4):508-19. DOI:10.1016/j.jocd.2013.08.018 · 1.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Optimal nutrition is an important part of human immunodeficiency virus (HIV) care; to support the immune system, limit HIV-associated complications as well as maintain better quality of life and survival. The presentation and nature of malnutrition in patients with HIV has changed dramatically over the past 30 years from predominantly a wasting syndrome to lipodystrophy and, now, frailty. Nevertheless, we continue to see all 3 presentations in patient care today. The pathogenesis of poor nutrition in HIV-infected patients depends on caloric intake, intestinal nutrient absorption/translocation, and resting energy expenditure, which are features seen in all chronic diseases.
    Endocrinology & Metabolism Clinics of North America 09/2014; 43(3):647–663. DOI:10.1016/j.ecl.2014.05.004 · 2.86 Impact Factor


Available from