Regulation of feeding and anxiety by alpha-MSH reactive autoantibodies.

Digestive System & Nutrition Laboratory (ADEN EA4311), Institute of Biomedical Research, Rouen University & Hospital, IFR23, 76183 Rouen, France.
Psychoneuroendocrinology (Impact Factor: 5.59). 11/2008; 34(1):140-9. DOI: 10.1016/j.psyneuen.2008.08.021
Source: PubMed

ABSTRACT alpha-Melanocyte-stimulating hormone (alpha-MSH) is a stress-related neuropeptide involved in the regulation of motivated behavior, appetite and emotion including stimulation of satiety and anxiety. Although autoantibodies (autoAbs) reactive with alpha-MSH have been identified in human subjects and in rats, it remained unknown if these autoAbs are involved in the regulation of feeding and anxiety and if their production is related to stress. Here we show that repeated exposure of rats to anxiolytic mild stress by handling increases the levels and affinity of alpha-MSH reactive IgG autoAbs and that these changes are associated with adaptive feeding and anxiety responses during exposure of rats to a strong stress by food restriction. Importantly, an increase in affinity of alpha-MSH reactive autoAbs was associated with changes of their functional roles from stimulation to inhibition of alpha-MSH-mediated behavioural responses, suggesting that these autoAbs can be a carrier or a neutralizing molecule of alpha-MSH peptide, respectively. Using a model of passive transfer into the brain, we show that alpha-MSH autoAbs affinity purified from blood of rats exposed to repeated mild stress, but not from control rats, are able to increase acutely food intake, suppress anxiety and modify gene expression of hypothalamic neuropeptides in naïve rats. These data provide the first evidence that autoAbs reactive with alpha-MSH are involved in the physiological regulation of feeding and mood, supporting a further role of the immune system in the control of motivated behavior and adaptation to stress.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Differences in the gut microbiota have been reported between individuals with autism spectrum disorders (ASD) and neurotypical controls, although direct evidence that changes in the microbiome contribute to causing ASD has been scarce to date. Here we summarize some considerations of experimental design that can help untangle causality in this complex system. In particular, large cross-sectional studies that can factor out important variables such as diet, prospective longitudinal studies that remove some of the influence of interpersonal variation in the microbiome (which is generally high, especially in children), and studies transferring microbial communities into germ-free mice may be especially useful. Controlling for the effects of technical variables, which have complicated efforts to combine existing studies, is critical when biological effect sizes are small. Large citizen-science studies with thousands of participants such as the American Gut Project have been effective at uncovering subtle microbiome effects in self-collected samples and with self-reported diet and behavior data, and may provide a useful complement to other types of traditionally funded and conducted studies in the case of ASD, especially in the hypothesis generation phase.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The biological background of sex-related differences in the development of eating disorders (EDs) is unknown. Recent data showed that gut bacteria Escherichia coli induce autoantibodies against anorexigenic α-melanocyte-stimulating hormone (α-MSH) associated with psychopathology in ED. The aim of this study was to compare the effects of E. coli on feeding and autoantibodies against α-MSH and adrenocorticotropic hormone (ACTH), between female and male rats. Commensal E. coli K12 were given in a culture medium daily to adult Wistar rats by intragastric gavage over a 3-wk period; control rats received culture medium only. Before gavage, E. coli K12 DNA was detected in feces of female but not male rats. E. coli provision was accompanied by an increase in body weight gain in females, but a decrease in body weight gain and food intake in males. Independent of E. coli treatment, plasma levels of anti-α-MSH and ACTH immunoglobulin (Ig)G were higher in female than male rats. Females responded to E. coli by increasing α-MSH IgG levels and affinity, but males by increasing α-MSH IgM levels. Affinity of IgG for ACTH was increased in both E. coli-treated females and males, although with different kinetics. IgG from females stimulated more efficiently α-MSH-induced cyclic adenosine monophosphate production by melanocortin 4 receptor-expressing cells compared with IgG from males. Sex-related response to how E. coli affects feeding and anti-melanocortin hormone antibody production may depend on the presence of these bacteria in the gut before E. coli supplementation. These data suggest that sex-related presence of certain gut bacteria may represent a risk factor for ED development. Copyright © 2015 Elsevier Inc. All rights reserved.
    Nutrition 03/2015; 31(3):498-507. DOI:10.1016/j.nut.2014.11.003 · 3.05 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Afamelanotide is an α-melanocyte-stimulating hormone (α-MSH) agonist with proven efficacy in photodermatoses such as erythropoietic protoporphyria (EPP). This peptide drug, repeatedly administered over prolonged time, may induce anti-drug antibodies (ADA). Here, we describe a new ELISA method developed to monitor the occurrence of ADA against afamelanotide as well as against α-MSH. Covalent binding instead of absorption of antigen onto the microtitre wells prevented antigen leakage and enabled extensive washings followed by lower background. The cut-off between antibody-negative and -positive sera was determined. Inhibition of the antigen-antibody reaction by excess soluble antigen tested for specificity. The sensitivity of the ELISA was 608 and 1,390 ng/ml of specific ADA against afamelanotide and α-MSH, respectively. This ELISA method enabled us to investigate the occurrence of ADA during long-term administration of afamelanotide. No immunoreactivity was found in 23 of the 26 EPP patients exposed to the drug for up to 6 years. Pre-existing immunoreactivity against afamelanotide as well as α-MSH was found in 3 patients, whose titres did not change during afamelanotide administration. Conclusion: The new ELISA is suitable to determine ADA against afamelanotide and α-MSH. Afamelanotide did not elicit ADA during long-term administration in patients with EPP. © 2014 S. Karger AG, Basel.
    Skin pharmacology and physiology 11/2014; 28(2):103-113. DOI:10.1159/000362174 · 1.96 Impact Factor


1 Download
Available from
May 5, 2015