Triterpene glycosides from Antarctic sea cucumbers. 1. Structure of liouvillosides A1, A2, A3, B1, and B2 from the sea cucumber Staurocucumis liouvillei: new procedure for separation of highly polar glycoside fractions and taxonomic revision.

Pacific Institute of Bioorganic Chemistry of the Far East Division of the Russian Academy of Sciences, Pr. 100-letya Vladivostoka 159, 690022, Vladivostok, Russian Federation.
Journal of Natural Products (Impact Factor: 3.95). 11/2008; 71(10):1677-85. DOI: 10.1021/np800173c
Source: PubMed

ABSTRACT Five new triterpene glycosides, liouvillosides A1 (1), A2 (2), A3 (3), B1 (4), and B2 (5), have been isolated from the Antarctic sea cucumber Staurocucumis liouviellei along with the known liouvilloside A(6), isolated earlier from the same species, and hemoiedemosides A (7) and B (8), isolated earlier from the Patagonian sea cucumber Hemioedema spectabilis. The isolation was carried out using a new chromatographic procedure including application of ion-pair reversed-phase chromatography followed by chiral chromatography on a cyclodextrin ChiraDex column. The structures of the new glycosides were elucidated using extensive NMR spectroscopy (1H and 13C NMR spectrometry, DEPT, 1H-(1)H COSY, HMBC, HMQC, and NOESY), ESI-FTMS, and CID MS/MS, and chemical transformations. Glycosides 1-3 are disulfated tetraosides and glycosides 4 and 5 are trisulfated tetraosides. Glycosides 2 and 3 contain 3-O-methylquinovose, found for the first time as a natural monosaccharide in sea cucumber glycosides. On the basis of analyses of glycoside structures a taxonomic revision is proposed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cytotoxic effects of thirteen triterpene glycosides from Holothuria scabra Jaeger and Cucumaria frondosa Gunnerus (Holothuroidea) against four human cell lines were detected and their cytotoxicity-structure relationships were established. The apoptosis-inducing activity of a more potent glycoside echinoside A (1) in HepG2 cells was further investigated by determining its effect on the morphology, mitochondrial transmembrane potential (Δψm) and mRNA expression levels of the apoptosis-related genes. The results showed that the number of glycosyl residues in sugar chains and the side chain of aglycone could affect their cytotoxicity towards tumor cells and selective cytotoxicity. 1 significantly inhibited cell viability and induced apoptosis in HepG2 cells. 1 also markedly decreased the Δψm and Bcl-2/Bax mRNA express ratio, and up-regulated the mRNA expression levels of Caspase-3, Caspase-8 and Caspase-9 in HepG2 cells. Therefore, 1 induced apoptosis in HepG2 cells through both intrinsic and extrinsic pathway. These findings could potentially promote the usage of these glycosides as leading compounds for developing new antitumor drugs.
    Marine Drugs 08/2014; 12(8):4274-90. · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sea cucumbers are prolific producers of a wide range of bioactive compounds. This study aimed to purify and characterize one class of compound, the saponins, from the viscera of the Australian sea cucumber Holothuria lessoni. The saponins were obtained by ethanolic extraction of the viscera and enriched by a liquid-liquid partition process and adsorption column chromatography. A high performance centrifugal partition chromatography (HPCPC) was applied to the saponin-enriched mixture to obtain saponins with high purity. The resultant purified saponins were profiled using MALDI-MS/MS and ESI-MS/MS which revealed the structure of isomeric saponins to contain multiple aglycones and/or sugar residues. We have elucidated the structure of five novel saponins, Holothurins D/E and Holothurinosides X/Y/Z, along with seven reported triterpene glycosides, including sulfated and non-sulfated saponins containing a range of aglycones and sugar moieties, from the viscera of H. lessoni. The abundance of novel compounds from this species holds promise for biotechnological applications.
    Marine Drugs 08/2014; 12(8):4439-4473. · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many marine triterpene glycosides have in vitro and in vivo activities with very low toxicity, suggesting that they are suitable agents for the prevention and treatment of different diseases, particularly cancer. However, the molecular mechanisms of action of natural marine compounds in cancer, immune, and other various cells are not fully known. This review focuses on the structural characteristics of marine triterpene glycosides and how these affect their biological activities and molecular mechanisms. In particular, the membranotropic and membranolytic activities of frondoside A and cucumariosides from sea cucumbers and their ability to induce cytotoxicity and apoptosis have been discussed, with a focus on structure-activity relationships. In addition, the structural characteristics and antitumor effects of stichoposide C and stichoposide D have been reviewed along with underlying their molecular mechanisms.
    Frontiers in Chemistry 09/2014; 2:77.

Full-text (2 Sources)

Available from
May 20, 2014