Article

Retinoic acid regulates RARalpha-mediated control of translation in dendritic RNA granules during homeostatic synaptic plasticity.

Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 11/2008; 105(41):16015-20. DOI: 10.1073/pnas.0804801105
Source: PubMed

ABSTRACT Homeostatic plasticity is thought to play an important role in maintaining the stability of neuronal circuits. During one form of homeostatic plasticity, referred to as synaptic scaling, activity blockade leads to a compensatory increase in synaptic transmission by stimulating in dendrites the local translation and synaptic insertion of the AMPA receptor subunit GluR1. We have previously shown that all-trans retinoic acid (RA) mediates activity blockade-induced synaptic scaling by activating dendritic GluR1 synthesis and that this process requires RARalpha, a member of the nuclear RA receptor family. This result raised the question of where RARalpha is localized in dendrites and whether its localization is regulated by RA and/or activity blockade. Here, we show that activity blockade or RA treatment in neurons enhances the concentration of RARalpha in the dendritic RNA granules and activates local GluR1 synthesis in these RNA granules. Importantly, the same RNA granules that contain RARalpha also exhibit an accumulation of GluR1 protein but with a much slower time course than that of RARalpha, suggesting that the former regulates the latter. Taken together, our results provide a direct link between dendritically localized RARalpha and local GluR1 synthesis in RNA granules during RA-mediated synaptic signaling in homeostatic synaptic plasticity.

1 Follower
 · 
86 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The retinoic acid receptor (RAR) α system plays a key role in the adult brain, participating in the homeostatic control of synaptic plasticity, essential for memory function. Here we show that RARα signalling is down-regulated by amyloid beta (Aβ), which inhibits the synthesis of the endogenous ligand, retinoic acid (RA). This results in the counteraction of a variety of RARα-activated pathways that are key in the aetiopathology of Alzheimer's disease (AD) but which can be reversed by an RARα agonist. RARα signalling improves cognition in the Tg2576 mice, it has an anti-inflammatory effect and promotes Aβ clearance by increasing insulin degrading enzyme and neprilysin activity in both microglia and neurons. In addition, RARα signalling prevents tau phosphorylation. Therefore, stimulation of the RARα signalling pathway using a synthetic agonist, by both clearing Aβ and counteracting some of its toxic effects, offers therapeutic potential for the treatment of AD.
    European Journal of Neuroscience 02/2013; 37(7). DOI:10.1111/ejn.12142 · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations that alter signaling through the mammalian target of rapamycin complex 1 (mTORC1), a well established regulator of neuronal protein synthesis, have been linked to autism and cognitive dysfunction. Although previous studies have established a role for mTORC1 as necessary for enduring changes in postsynaptic function, here we demonstrate that dendritic mTORC1 activation in rat hippocampal neurons also drives a retrograde signaling mechanism promoting enhanced neurotransmitter release from apposed presynaptic terminals. This novel mode of synaptic regulation conferred by dendritic mTORC1 is locally implemented, requires downstream synthesis of brain-derived neurotrophic factor as a retrograde messenger, and is engaged in an activity-dependent fashion to support homeostatic trans-synaptic control of presynaptic function. Our findings thus reveal that mTORC1-dependent translation in dendrites subserves a unique mode of synaptic regulation, highlighting an alternative regulatory pathway that could contribute to the social and cognitive dysfunction that accompanies dysregulated mTORC1 signaling.
    The Journal of Neuroscience : The Official Journal of the Society for Neuroscience 11/2012; 32(48):17128-42. DOI:10.1523/JNEUROSCI.2149-12.2012 · 6.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: All-trans retinoic acid (RA) plays important roles in brain development through regulating gene transcription. Recently, a novel post-developmental role of RA in mature brain was proposed. Specifically, RA rapidly enhanced excitatory synaptic transmission independent of transcriptional regulation. RA synthesis was induced when excitatory synaptic transmission was chronically blocked, and RA then activated dendritic protein synthesis and synaptic insertion of homomeric GluA1 AMPA receptors, thereby compensating for the loss of neuronal activity in a homeostatic fashion. This action of RA was suggested to be mediated by its canonical receptor RARα but no genetic evidence was available. Thus, we here tested the fundamental requirement of RARα in homeostatic plasticity using conditional RARα knockout (KO) mice, and additionally performed a structure-function analysis of RARα. We show that acutely deleting RARα in neurons eliminated RA's effect on excitatory synaptic transmission, and inhibited activity blockade-induced homeostatic synaptic plasticity. By expressing various RARα rescue constructs in RARα KO neurons, we found that the DNA-binding domain of RARα was dispensable for its role in regulating synaptic strength, further supporting the notion that RA and RARα act in a non-transcriptional manner in this context. By contrast, the ligand-binding domain (LBD) and the mRNA-binding domain (F-domain) are both necessary and sufficient for the function of RARα in homeostatic plasticity. Furthermore, we found that homeostatic regulation performed by the LBD/F-domains leads to insertion of calcium-permeable AMPA receptors. Our results confirm with unequivocal genetic approaches that RA and RARα perform essential non-transcriptional functions in regulating synaptic strength, and establish a functional link between the various domains of RARα and their involvement in regulating protein synthesis and excitatory synaptic transmission during homeostatic plasticity.
    Frontiers in Molecular Neuroscience 02/2012; 5:16. DOI:10.3389/fnmol.2012.00016