The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics.

Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Universités Aix-Marseille I & II, 163 Avenue de Luminy, 13288 Marseille, France.
Nucleic Acids Research (Impact Factor: 8.81). 11/2008; 37(Database issue):D233-8. DOI: 10.1093/nar/gkn663
Source: PubMed

ABSTRACT The Carbohydrate-Active Enzyme (CAZy) database is a knowledge-based resource specialized in the enzymes that build and breakdown complex carbohydrates and glycoconjugates. As of September 2008, the database describes the present knowledge on 113 glycoside hydrolase, 91 glycosyltransferase, 19 polysaccharide lyase, 15 carbohydrate esterase and 52 carbohydrate-binding module families. These families are created based on experimentally characterized proteins and are populated by sequences from public databases with significant similarity. Protein biochemical information is continuously curated based on the available literature and structural information. Over 6400 proteins have assigned EC numbers and 700 proteins have a PDB structure. The classification (i) reflects the structural features of these enzymes better than their sole substrate specificity, (ii) helps to reveal the evolutionary relationships between these enzymes and (iii) provides a convenient framework to understand mechanistic properties. This resource has been available for over 10 years to the scientific community, contributing to information dissemination and providing a transversal nomenclature to glycobiologists. More recently, this resource has been used to improve the quality of functional predictions of a number genome projects by providing expert annotation. The CAZy resource resides at URL:

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biomass is the most abundant and short-term renewable natural resource on Earth whose recalcitrance toward enzymatic degradation represents significant challenge for a number of biotechnological applications. The not so abundant but critically necessary class of GH45 endoglucanases constitutes an essential component of tailored industrial enzyme cocktails because they randomly and internally cleave cellulose molecules. Moreover, GH45 glucanases are core constituents of major-brand detergent formulations as well as enzymatic aid components in the cotton processing industry, clipping unwanted cellulosic fibers from cotton (cellulosic)-based tissues. Here we report on a recombinant high-yield Neurospora crassa OR74A NcCel45A production system, a single-band GH45 endoglucanase purification, and a complete enzyme functional characterization. NcCel45A is a bimodular endoglucanase showing maximum activity at pH 6.0 and 60 °C, while most active against lichenan and β-glucans and lesser active toward filter paper, carboxymethylcellulose, and phosphoric acid-swollen cellulose. Gluco-oligosaccharide degradation fingerprinting experiments suggest cellopentaose as the minimal length substrate and ThermalFluor studies indicate that NcCel45A displays excellent stability at elevated temperatures up to 70 °C and pHs ranging from 5 to 9. Remarkably, we show that NcCel45A is uniquely resistant to a wide-range of organic solvents and small-angle X-ray scattering show a monkey-wrench molecular shape structure in solution, which indicates, unlike to other known cellulases, a non-fully extended conformation, thus conferring solvent protection. These NcCel45A unique enzymatic properties maybe key for specific industrial applications such as cotton fiber processing and detergent formulations.
    Molecular biotechnology. 02/2015;
  • American Journal of Potato Research 10/2014; 91(5):517-524. · 0.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Crop residue is an abundant, low-cost plant biomass material available worldwide for use in the microbial production of enzymes, biofuels, and valuable chemicals. However, the diverse chemical composition and complex structure of crop residues are more challenging for efficient degradation by microbes than are homogeneous polysaccharides. In this study, the transcriptional responses of Neurospora crassa to various plant straws were analyzed using RNA-Seq, and novel beneficial factors for biomass-induced enzyme production were evaluated. Comparative transcriptional profiling of N. crassa grown on five major crop straws of China (barley, corn, rice, soybean, and wheat straws) revealed a highly overlapping group of 430 genes, the biomass commonly induced core set (BICS). A large proportion of induced carbohydrate-active enzyme (CAZy) genes (82 out of 113) were also conserved across the five plant straws. Excluding 178 genes within the BICS that were also upregulated under no-carbon conditions, the remaining 252 genes were defined as the biomass regulon (BR). Interestingly, 88 genes were only induced by plant biomass and not by three individual polysaccharides (Avicel, xylan, and pectin); these were denoted as the biomass unique set (BUS). Deletion of one BUS gene, the transcriptional regulator rca-1, significantly improved lignocellulase production using plant biomass as the sole carbon source, possibly functioning via de-repression of the regulator clr-2. Thus, this result suggests that rca-1 is a potential engineering target for biorefineries, especially for plant biomass direct microbial conversion processes. Transcriptional profiling revealed a large core response to different sources of plant biomass in N. crassa. The sporulation regulator rca-1 was identified as beneficial for biomass-based enzyme production.
    Biotechnology for Biofuels 01/2015; 8:21. · 6.22 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014