Characterization of cytokinin and adenine transport in Arabidopsis cell cultures.

Center for Plant Molecular Biology, University of Tuebingen, D-72071 Tuebingen, Germany.
Plant physiology (Impact Factor: 7.39). 11/2008; 148(4):1857-67. DOI: 10.1104/pp.108.128454
Source: PubMed

ABSTRACT Cytokinins are distributed through the vascular system and trigger responses of target cells via receptor-mediated signal transduction. Perception and transduction of the signal can occur at the plasma membrane or in the cytosol. The signal is terminated by the action of extra- or intracellular cytokinin oxidases. While radiotracer studies have been used to study transport and metabolism of cytokinins in plants, little is known about the kinetic properties of cytokinin transport. To provide a reference dataset, radiolabeled trans-zeatin (tZ) was used for uptake studies in Arabidopsis (Arabidopsis thaliana) cell culture. Uptake kinetics of tZ are multiphasic, indicating the presence of both low- and high-affinity transport systems. The protonophore carbonyl cyanide m-chlorophenylhydrazone is an effective inhibitor of cytokinin uptake, consistent with H(+)-mediated uptake. Other physiological cytokinins, such as isopentenyl adenine and benzylaminopurine, are effective competitors of tZ uptake, whereas allantoin has no inhibitory effect. Adenine competes for zeatin uptake, indicating that the degradation product of cytokinin oxidases is transported by the same systems. Comparison of adenine and tZ uptake in Arabidopsis seedlings reveals similar uptake kinetics. Kinetic properties, as well as substrate specificity determined in cell cultures, are compatible with the hypothesis that members of the plant-specific purine permease family play a role in adenine transport for scavenging extracellular adenine and may, in addition, be involved in low-affinity cytokinin uptake.

Download full-text


Available from: Burkhard Schulz, Jun 16, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The solute specificity profiles (transport and binding) for the nucleobase cation symporter 1 (NCS1) proteins, from the closely related C4 grasses Zea mays and Setaria viridis, differ from that of Arabidopsis thaliana and Chlamydomonas reinhardtii NCS1. Solute specificity profiles for NCS1 from Z. mays (ZmNCS1) and S. viridis (SvNCS1) were determined through heterologous complementation studies in NCS1-deficient Saccharomyces cerevisiae strains. The four Viridiplantae NCS1 proteins transport the purines adenine and guanine, but unlike the dicot and algal NCS1, grass NCS1 proteins fail to transport the pyrimidine uracil. Despite the high level of amino acid sequence similarity, ZmNCS1 and SvNCS1 display distinct solute transport and recognition profiles. SvNCS1 transports adenine, guanine, hypoxanthine, cytosine, and allantoin and competitively binds xanthine and uric acid. ZmNCS1 transports adenine, guanine, and cytosine and competitively binds, 5-fluorocytosine, hypoxanthine, xanthine, and uric acid. The differences in grass NCS1 profiles are due to a limited number of amino acid alterations. These amino acid residues do not correspond to amino acids essential for overall solute and cation binding or solute transport, as previously identified in bacterial and fungal NCS1, but rather may represent residues involved in subtle solute discrimination. The data presented here reveal that within Viridiplantae, NCS1 proteins transport a broad range of nucleobase compounds and that the solute specificity profile varies with species.
    Protoplasma 05/2015; DOI:10.1007/s00709-015-0838-x · 3.17 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leaf senescence is an important developmental programmed degeneration process that dramatically affects crop quality and yield. The regulation of senescence is highly complex. Although senescence regulatory genes have been well characterized in model species such as Arabidopsis and rice, there is little information on the control of this process in cotton. Here, the senescence process in cotton (Gossypium hirsutum L.) leaves was investigated over a time course including young leaf, mature leaf and leaf samples from different senescence stages using RNA-Seq. Of 24,846 genes detected by mapping the tags to Gossypium genomes, 3,624 genes were identified as differentially expressed during leaf senescence. There was some overlap between the genes identified here and senescence-associated genes previously identified in other species. Most of the genes related to photosynthesis, chlorophyll metabolism and carbon fixation were downregulated; whereas those for plant hormone signal transduction were upregulated. Quantitative real-time PCR was used to evaluate the results of RNA-Seq for gene expression profiles. Furthermore, 519 differentially expressed transcription factors were identified, notably WRKY, bHLH and C3H. In addition, 960 genes involved in the metabolism and regulation of eight hormones were identified, of which many genes involved in the abscisic acid, brassinosteroid, jasmonic acid, salicylic acid and ethylene pathways were upregulated, indicating that these hormone-related genes might play crucial roles in cotton leaf development and senescence. However, most auxin, cytokinin and gibberellin pathway-related genes were downregulated, suggesting that these three hormones may act as negative regulators of senescence. This is the first high-resolution, multiple time-course, genome-wide comprehensive analysis of gene expression in cotton. These data are the most comprehensive dataset currently available for cotton leaf senescence, and will serve as a useful resource for unraveling the functions of many specific genes involved in cotton leaf development and senescence.
    BMC Plant Biology 12/2015; 15(1):433. DOI:10.1186/s12870-015-0433-5 · 3.94 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nucleotide metabolism is an essential process in all living organisms. Besides newly synthesized nucleotides, the recycling (salvage) of partially degraded nucleotides, i.e., nucleosides and nucleobases serves to keep the homeostasis of the nucleotide pool. Both types of metabolites are substrates of at least six families of transport proteins in Arabidopsis thaliana (Arabidopsis) with a total of 49 members. In the last years several members of such transport proteins have been analyzed allowing to present a more detailed picture of nucleoside and nucleobase transport and the physiological function of these processes. Besides functioning in nucleotide metabolism it turned out that individual members of the before named transporters exhibit the capacity to transport a wide range of different substrates including vitamins and phytohormones. The aim of this review is to summarize the current knowledge on nucleobase and nucleoside transport processes in plants and integrate this into nucleotide metabolism in general. Thereby, we will focus on those proteins which have been characterized at the biochemical level.
    Frontiers in Plant Science 09/2014; 5:443. DOI:10.3389/fpls.2014.00443 · 3.64 Impact Factor