Article

Regulation of cell growth during serum starvation and bacterial survival in macrophages by the bifunctional enzyme SpoT in Helicobacter pylori.

National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702, USA.
Journal of bacteriology (Impact Factor: 2.69). 11/2008; 190(24):8025-32. DOI: 10.1128/JB.01134-08
Source: PubMed

ABSTRACT In Helicobacter pylori the stringent response is mediated solely by spoT. The spoT gene is known to encode (p)ppGpp synthetase activity and is required for H. pylori survival in the stationary phase. However, neither the hydrolase activity of the H. pylori SpoT protein nor the role of SpoT in the regulation of growth during serum starvation and intracellular survival of H. pylori in macrophages has been determined. In this study, we examined the effects of SpoT on these factors. Our results showed that the H. pylori spoT gene encodes a bifunctional enzyme with both a hydrolase activity and the previously described (p)ppGpp synthetase activity, as determined by introducing the gene into Escherichia coli relA and spoT defective strains. Also, we found that SpoT mediates a serum starvation response, which not only restricts the growth but also maintains the helical morphology of H. pylori. Strikingly, a spoT null mutant was able to grow to a higher density in serum-free medium than the wild-type strain, mimicking the "relaxed" growth phenotype of an E. coli relA mutant during amino acid starvation. Finally, SpoT was found to be important for intracellular survival in macrophages during phagocytosis. The unique role of (p)ppGpp in cell growth during serum starvation, in the stress response, and in the persistence of H. pylori is discussed.

Full-text

Available from: Nathaniel W Hodgson, Jan 07, 2014
0 Followers
 · 
93 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Outer membrane proteins (OMPs) can induce an immune response. Omp18 (HP1125) of H. pylori is a powerful antigen that can induce significant interferon-γ (IFN-γ) levels. Previous studies have suggested that IFN-γ plays an important role in H. pylori clearance. However, H. pylori has multiple mechanisms to avoid host immune surveillance for persistent colonization. We generated an omp18 mutant (H. pylori 26695 and H. pylori SS1) strain to examine whether Omp18 interacts with IFN-γ and is involved in H. pylori colonization. qRT-PCR revealed that IFN-γ induced Omp18 expression. qRT-PCR and western blot analysis revealed reduced expressions of virulence factors CagA and NapA in H. pylori 26695 with IFN-γ treatment, but they were induced in the Δomp18 strain. In C57BL/6 mice infected with H. pylori SS1 and the Δomp18 strain, the Δomp18 strain conferred defective colonization and activated a stronger inflammatory response. Signal transducer phosphorylation and transcription 1 (STAT1) activator was downregulated by the wild-type strain but not the Δomp18 strain in IFN-γ-treated macrophages. Furthermore, Δomp18 strain survival rates were poor in macrophages compared to the wild-type strain. We concluded that H. pylori Omp18 has an important function influencing IFN-γ-mediated immune response to participate in persistent colonization.
    01/2015; 2015:1-12. DOI:10.1155/2015/571280
  • Source
    Revista Colombiana de Gastroenterologia 03/2014; 29(1):36-45.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bacteria inhabit enormously diverse niches and have a correspondingly large array of regulatory mechanisms to adapt to often inhospitable and variable environments. The stringent response (SR) allows bacteria to quickly reprogram transcription in response to changes in nutrient availability. Although the proteins controlling this response are conserved in almost all bacterial species, recent work has illuminated considerable diversity in the starvation cues and regulatory mechanisms that activate stringent signaling proteins in bacteria from different environments. In this review, we describe the signals and genetic circuitries that control the stringent signaling systems of a copiotroph, a bacteriovore, an oligotroph, and a mammalian pathogen -Escherichia coli, Myxococcus xanthus, Caulobacter crescentus, and Mycobacterium tuberculosis, respectively - and discuss how control of the SR in these species is adapted to their particular lifestyles.
    Trends in Microbiology 02/2013; DOI:10.1016/j.tim.2013.01.002 · 9.81 Impact Factor