Direct observation of Staphylococcus aureus cell wall digestion by lysostaphin.

Unité de Chimie des Interfaces, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.
Journal of bacteriology (Impact Factor: 3.94). 11/2008; 190(24):7904-9. DOI: 10.1128/JB.01116-08
Source: PubMed

ABSTRACT The advent of Staphylococcus aureus strains that are resistant to virtually all antibiotics has increased the need for new antistaphylococcal agents. An example of such a potential therapeutic is lysostaphin, an enzyme that specifically cleaves the S. aureus peptidoglycan, thereby lysing the bacteria. Here we tracked over time the structural and physical dynamics of single S. aureus cells exposed to lysostaphin, using atomic force microscopy. Topographic images of native cells revealed a smooth surface morphology decorated with concentric rings attributed to newly formed peptidoglycan. Time-lapse images collected following addition of lysostaphin revealed major structural changes in the form of cell swelling, splitting of the septum, and creation of nanoscale perforations. Notably, treatment of the cells with lysostaphin was also found to decrease the bacterial spring constant and the cell wall stiffness, demonstrating that structural changes were correlated with major differences in cell wall nanomechanical properties. We interpret these modifications as resulting from the digestion of peptidoglycan by lysostaphin, eventually leading to the formation of osmotically fragile cells. This study provides new insight into the lytic activity of lysostaphin and offers promising prospects for the study of new antistaphylococcal agents.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carnobacteriocin BM1 (Cbn BM1) is a class IIa bacteriocin produced by Carnobacterium maltaromaticum CP5 isolated from a French mold ripened cheese. Numerous studies highlight variations in numerous parameters, such as bacterial membrane composition and potential, according to physiological changes. In this work, the mechanism of action of an oxidized form of Cbn BM1 was studied on C. maltaromaticum DSM20730 in log and stationary growth phases. Membrane integrity assessment and high resolution imaging by atomic force microscopy confirmed the link between physiological state and bacterial sensitivity to Cbn BM1. Indeed, these approaches enable visualizing morphological damage of C. maltaromaticum DSM20730 only in an active dividing state. To specifically address the interaction between peptide and bacterial membrane, fluorescence anisotropy measurements were conducted. Results revealed strong modifications in membrane fluidity by Cbn BM1 only for C. maltaromaticum DSM20730 in log growth phase. In a similar way, the Δψ component, but not the ΔpH component of the proton-motive force, was perturbed only for bacteria in log growth phase. These results clearly show that a class IIa bacteriocin antimicrobial mechanism of action can be modulated by the physiological state of its target bacteria.
    Research in Microbiology 05/2012; 163(5):323-31. · 2.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cette thèse s'inscrit dans le domaine des problèmes inverses en traitement du signal. Elle est consacrée à la conception d'algorithmes de restauration et de séparation de signaux parcimonieux et à leur application à l'approximation de courbes de forces en microscopie de force atomique (AFM), où la notion de parcimonie est liée au nombre de points de discontinuité dans le signal (sauts, changements de pente, changements de courbure). Du point de vue méthodologique, des algorithmes sous-optimaux sont proposés pour le problème de l'approximation parcimonieuse basée sur la pseudo-norme ℓ0 : l'algorithme Single Best Replacement (SBR) est un algorithme itératif de type « ajout-retrait » inspiré d'algorithmes existants pour la restauration de signaux Bernoulli-Gaussiens. L'algorithme Continuation Single Best Replacement (CSBR) est un algorithme permettant de fournir des approximations à des degrés de parcimonie variables. Nous proposons aussi un algorithme de séparation de sources parcimonieuses à partir de mélanges avec retards, basé sur l'application préalable de l'algorithme CSBR sur chacun des mélanges, puis sur une procédure d'appariement des pics présents dans les différents mélanges. La microscopie de force atomique est une technologie récente permettant de mesurer des forces d'interaction entre nano-objets. L'analyse de courbes de forces repose sur des modèles paramétriques par morceaux. Nous proposons un algorithme permettant de détecter les régions d'intérêt (les morceaux) où chaque modèle s'applique puis d'estimer par moindres carrés les paramètres physiques (élasticité, force d'adhésion, topographie, etc.) dans chaque région. Nous proposons finalement une autre approche qui modélise une courbe de force comme un mélange de signaux sources parcimonieux retardées. La recherche des signaux sources dans une image force-volume s'effectue à partir d'un grand nombre de mélanges car il y autant de mélanges que de pixels dans l'image.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Microbial cells sense and respond to their environment using their surface constituents. Therefore, understanding the assembly and biophysical properties of cell surface molecules is an important research topic. With its ability to observe living microbial cells at nanometer resolution and to manipulate single-cell surface molecules, atomic force microscopy (AFM) has emerged as a powerful tool in microbiology. Here, we survey major breakthroughs made in cell surface microbiology using AFM techniques, emphasizing the most recent structural and functional insights.
    mBio 01/2014; 5(4). · 6.88 Impact Factor


Available from
May 22, 2014