Dehghan, A., Köttgen, A., Yang, Q., Hwang, S. J., Kao, W. L., Rivadeneira, F. et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet 372, 1953-1961

Department of Epidemiology, Erasmus Medical Centre, Rotterdam, Netherlands.
The Lancet (Impact Factor: 45.22). 09/2008; 372(9654):1953-61. DOI: 10.1016/S0140-6736(08)61343-4
Source: PubMed

ABSTRACT Hyperuricaemia, a highly heritable trait, is a key risk factor for gout. We aimed to identify novel genes associated with serum uric acid concentration and gout.
Genome-wide association studies were done for serum uric acid in 7699 participants in the Framingham cohort and in 4148 participants in the Rotterdam cohort. Genome-wide significant single nucleotide polymorphisms (SNPs) were replicated in white (n=11 024) and black (n=3843) individuals who took part in the study of Atherosclerosis Risk in Communities (ARIC). The SNPs that reached genome-wide significant association with uric acid in either the Framingham cohort (p<5.0 x 10(-8)) or the Rotterdam cohort (p<1.0 x 10(-7)) were evaluated with gout. The results obtained in white participants were combined using meta-analysis.
Three loci in the Framingham cohort and two in the Rotterdam cohort showed genome-wide association with uric acid. Top SNPs in each locus were: missense rs16890979 in SLC2A9 (p=7.0 x 10(-168) and 2.9 x 10(-18) for white and black participants, respectively); missense rs2231142 in ABCG2 (p=2.5 x 10(-60) and 9.8 x 10(-4)), and rs1165205 in SLC17A3 (p=3.3 x 10(-26) and 0.33). All SNPs were direction-consistent with gout in white participants: rs16890979 (OR 0.59 per T allele, 95% CI 0.52-0.68, p=7.0 x 10(-14)), rs2231142 (1.74, 1.51-1.99, p=3.3 x 10(-15)), and rs1165205 (0.85, 0.77-0.94, p=0.002). In black participants of the ARIC study, rs2231142 was direction-consistent with gout (1.71, 1.06-2.77, p=0.028). An additive genetic risk score of high-risk alleles at the three loci showed graded associations with uric acid (272-351 mumol/L in the Framingham cohort, 269-386 mumol/L in the Rotterdam cohort, and 303-426 mumol/L in white participants of the ARIC study) and gout (frequency 2-13% in the Framingham cohort, 2-8% in the Rotterdam cohort, and 1-18% in white participants in the ARIC study).
We identified three genetic loci associated with uric acid concentration and gout. A score based on genes with a putative role in renal urate handling showed a substantial risk for gout.

Download full-text


Available from: Abbas Dehghan, Jul 29, 2014
49 Reads
  • Source
    • "12 of these 17 mutations cause renal hypouricemia type 2. Five mutations have been described with a gout phenotype: two missense variants p.V282I (rs16890979) [37], p.H294R (rs3733591) [38], [39] and three regulatory mutations [10], [40], [41]. The rs16890979 has been identified as being associated with serum UA concentrations, with a stronger association in women in the Framingham and Rotterdam cohorts [37] and in the island population of the Adriatic coast of Croatia [42]. Variant rs3733591 significantly contributes to the development of elevated serum UA concentrations and gout in the Han Chinese, Solomon Island and Japanese cohorts [25], [38], but not in the Eastern Polynesian, Western Polynesian cohorts and cohort of European descent [39], [42]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective Using European descent Czech populations, we performed a study of SLC2A9 and SLC22A12 genes previously identified as being associated with serum uric acid concentrations and gout. This is the first study of the impact of non-synonymous allelic variants on the function of GLUT9 except for patients suffering from renal hypouricemia type 2. Methods The cohort consisted of 250 individuals (150 controls, 54 nonspecific hyperuricemics and 46 primary gout and/or hyperuricemia subjects). We analyzed 13 exons of SLC2A9 (GLUT9 variant 1 and GLUT9 variant 2) and 10 exons of SLC22A12 by PCR amplification and sequenced directly. Allelic variants were prepared and their urate uptake and subcellular localization were studied by Xenopus oocytes expression system. The functional studies were analyzed using the non-parametric Wilcoxon and Kruskall-Wallis tests; the association study used the Fisher exact test and linear regression approach. Results We identified a total of 52 sequence variants (12 unpublished). Eight non-synonymous allelic variants were found only in SLC2A9: rs6820230, rs2276961, rs144196049, rs112404957, rs73225891, rs16890979, rs3733591 and rs2280205. None of these variants showed any significant difference in the expression of GLUT9 and in urate transport. In the association study, eight variants showed a possible association with hyperuricemia. However, seven of these were in introns and the one exon located variant, rs7932775, did not show a statistically significant association with serum uric acid concentration. Conclusion Our results did not confirm any effect of SLC22A12 and SLC2A9 variants on serum uric acid concentration. Our complex approach using association analysis together with functional and immunohistochemical characterization of non-synonymous allelic variants did not show any influence on expression, subcellular localization and urate uptake of GLUT9.
    PLoS ONE 09/2014; 9(9). DOI:10.1371/journal.pone.0107902 · 3.23 Impact Factor
  • Source
    • ", p=3.19×10-23). Gender-specific associations between SLC2A9 polymorphisms and uric acid concentrations have been reported by others and are consistent with our observations with CNPs near SLC2A9[7,33-36]. Independent replication of the association between copy number and uric acid concentrations in FHS provides further support for our finding. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Hyperuricemia is associated with multiple diseases, including gout, cardiovascular disease, and renal disease. Serum urate is highly heritable, yet association studies of single nucleotide polymorphisms (SNPs) and serum uric acid explain a small fraction of the heritability. Whether copy number polymorphisms (CNPs) contribute to uric acid levels is unknown. Results We assessed copy number on a genome-wide scale among 8,411 individuals of European ancestry (EA) who participated in the Atherosclerosis Risk in Communities (ARIC) study. CNPs upstream of the urate transporter SLC2A9 on chromosome 4p16.1 are associated with uric acid (χ2df2=3545, p=3.19×10-23). Effect sizes, expressed as the percentage change in uric acid per deleted copy, are most pronounced among women (3.974.935.87 [ 2.55097.5 denoting percentiles], p=4.57×10-23) and independent of previously reported SNPs in SLC2A9 as assessed by SNP and CNP regression models and the phasing SNP and CNP haplotypes (χ2df2=3190,p=7.23×10-08). Our finding is replicated in the Framingham Heart Study (FHS), where the effect size estimated from 4,089 women is comparable to ARIC in direction and magnitude (1.414.707.88, p=5.46×10-03). Conclusions This is the first study to characterize CNPs in ARIC and the first genome-wide analysis of CNPs and uric acid. Our findings suggests a novel, non-coding regulatory mechanism for SLC2A9-mediated modulation of serum uric acid, and detail a bioinformatic approach for assessing the contribution of CNPs to heritable traits in large population-based studies where technical sources of variation are substantial.
    BMC Genetics 07/2014; 15(1):81. DOI:10.1186/1471-2156-15-81 · 2.40 Impact Factor
  • Source
    • "Genetic variation in ATP-binding cassette sub-family G member 2 (ABCG2) is a major risk factor for hyperuricemia and gout [1-3]. This gene encodes a high-capacity urate exporter [2,3], expressed in the intestine, liver and renal tubule [4]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Both genetic variation in ATP-binding cassette sub-family G member 2 (ABCG2) and intake of fructose-containing beverages are major risk factors for hyperuricemia and gout. This study aimed to test the hypothesis that the ABCG2 gout risk allele 141 K promotes the hyperuricaemic response to fructose loading. Healthy volunteers (n = 74) provided serum and urine samples immediately before and 30, 60, 120 and 180 minutes after ingesting a 64 g fructose solution. Data were analyzed based on the presence or absence of the ABCG2 141 K gout risk allele. The 141 K risk allele was present in 23 participants (31%). Overall, serum urate (SU) concentrations during the fructose load were similar in those with and without the 141 K allele (PSNP = 0.15). However, the 141 K allele was associated with a smaller increase in SU following fructose intake (PSNP <0.0001). Those with the 141 K allele also had a smaller increase in serum glucose following the fructose load (PSNP = 0.002). Higher fractional excretion of uric acid (FEUA) at baseline and throughout the fructose load was observed in those with the 141 K risk allele (PSNP <0.0001). However, the change in FEUA in response to fructose was not different in those with and without the 141 K risk allele (PSNP = 0.39). The 141 K allele effects on serum urate and glucose were more pronounced in Polynesian participants and in those with a body mass index >=25 kg/m2. In contrast to the predicted responses for a hyperuricemia/gout risk allele, the 141 K allele is associated with smaller increases in SU and higher FEUA following a fructose load. The results suggest that ABCG2 interacts with extra-renal metabolic pathways in a complex manner to regulate SU and gout risk.Clinical Trials Registration: The study was registered by the Australian Clinical Trials Registry (ACTRN12610001036000).
    Arthritis research & therapy 01/2014; 16(1):R34. DOI:10.1186/ar4463 · 3.75 Impact Factor
Show more