Increased myocardial susceptibility to repetitive ischemia with high-fat diet-induced obesity.

Section of Atherosclerosis and Vascular Medicine, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA.
Obesity (Impact Factor: 4.39). 11/2008; 16(12):2593-600. DOI: 10.1038/oby.2008.414
Source: PubMed

ABSTRACT Obesity and diabetes are frequently associated with cardiovascular disease. When a normal heart is subjected to brief/sublethal repetitive ischemia and reperfusion (I/R), adaptive responses are activated to preserve cardiac structure and function. These responses include but are not limited to alterations in cardiac metabolism, reduced calcium responsiveness, and induction of antioxidant enzymes. In a model of ischemic cardiomyopathy inducible by brief repetitive I/R, we hypothesized that dysregulation of these adaptive responses in diet-induced obese (DIO) mice would contribute to enhanced myocardial injury. DIO C57BL/6J mice were subjected to 15 min of daily repetitive I/R while under short-acting anesthesia, a protocol that results in the development of fibrotic cardiomyopathy. Cardiac lipids and candidate gene expression were analyzed at 3 days, and histology at 5 days of repetitive I/R. Total free fatty acids (FFAs) in the cardiac extracts of DIO mice were significantly elevated, reflecting primarily the dietary fatty acid (FA) composition. Compared with lean controls, cardiac FA oxidation (FAO) capacity of DIO mice was significantly higher, concurrent with increased expression of FA metabolism gene transcripts. Following 15 min of daily repetitive I/R for 3 or 5 days, DIO mice exhibited increased susceptibility to I/R and, in contrast to lean mice, developed microinfarction, which was associated with an exaggerated inflammatory response. Repetitive I/R in DIO mice was associated with more profound significant downregulation of FA metabolism gene transcripts and elevated FFAs and triglycerides. Maladaptive metabolic changes of FA metabolism contribute to enhanced myocardial injury in diet-induced obesity.

Download full-text


Available from: Joe Raya, Jun 23, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although obesity is still considered a risk factor in the development of cardiovascular disorders, recent studies suggested that it may also be associated with reduced morbidity and mortality, the so-called "obesity paradox". Experimental data on the impact of diabetes, obesity and insulin resistance on myocardial ischaemia/reperfusion injury are controversial. Similar conflicting data have been reported regarding the effects of ischaemic preconditioning on ischaemia/reperfusion injury in hearts from such animals. The aim of the present study was to evaluate the susceptibility to myocardial ischaemia/reperfusion damage in two models of diet-induced obesity as well as the effect of ischaemic and pharmacological preconditioning on such hearts.
    Cardiovascular Diabetology 07/2014; 13(1):109. DOI:10.1186/s12933-014-0109-8 · 3.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The incidence of obesity with insulin resistance is increasing worldwide. This condition is also known as a risk factor of coronary artery disease and associated with increased arrhythmias, impaired left ventricular function, and increased infarct size during cardiac ischemia-reperfusion (I/R) injury. The proposed mechanisms are due to impaired glucose utilization and pro-survival signaling molecules, and increased inflammatory cytokines, which have been demonstrated in the I/R hearts in various models of obese-insulin resistance. However, the cardiac effects of diets in the I/R heart are still unsettled since several studies reported that high-caloric diet consumption might protect the heart from I/R injury. Although several therapeutic strategies such as anti-diabetic drugs, natural compounds as well as treadmill exercise have been proposed to exert cardioprotection in the I/R heart in obese-insulin resistant animals, some interventions including ischemic post-conditioning failed to protect the heart from I/R injury. In this comprehensive review, reports from both genetic deletion and dietary-induced obese-insulin resistant animal models regarding the effects of obese-insulin resistance on metabolic parameters, cardiac function, infarct size, and molecular mechanisms under I/R injury are summarized. Moreover, the effects of anti-diabetic drugs and other pharmacological interventions on these parameters in an obese-insulin resistant model under I/R injury are also comprehensively summarized and discussed.
    Cardiovascular Drugs and Therapy 10/2014; 28(6). DOI:10.1007/s10557-014-6553-6 · 2.95 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic melatonin treatment has been shown to prevent the harmful effects of diet-induced obesity and reduce myocardial susceptibility to ischaemia-reperfusion injury (IRI). However, the exact mechanism whereby it exerts its beneficial actions on the heart in obesity/insulin resistance remains unknown. Herein, we investigated the effects of relatively short-term melatonin treatment on the heart in a rat model of diet-induced obesity. Control and diet-induced obese Wistar rats (fed a high calorie diet for 20 weeks) were each subdivided into 3 groups receiving drinking water with or without melatonin (4mg/kg/day) for the last 6 or 3 weeks of experimentation. A number of isolated hearts were perfused in the working mode, subjected to regional or global ischaemia-reperfusion; others were non-perfused. Metabolic parameters, myocardial infarct sizes, baseline and post-ischaemic activation of PKB/Akt, ERK42/44, GSK-3β and STAT-3 were determined. Diet-induced obesity caused increases in body weight gain, visceral adiposity, fasting blood glucose, serum insulin and triglyceride levels with a concomitant cardiac hypertrophy, large post-ischaemic myocardial infarct sizes and a reduced cardiac output. Melatonin treatment (3 and 6 weeks) decreased serum insulin levels and the HOMA-index (p<0.05) with no effect on weight gain (after 3 weeks), visceral adiposity, serum triglyceride and glucose levels. It increased serum adiponectin levels, reduced myocardial infarct sizes in both groups and activated baseline myocardial STAT-3 and PKB/Akt, ERK42/44 and GSK-3β during reperfusion. Overall, short-term melatonin administration to obese/insulin resistant rats reduced insulin resistance and protected the heart against ex vivo myocardial IRI independently of body weight change and visceral adiposity.
    Journal of Pineal Research 09/2014; 57(3). DOI:10.1111/jpi.12171 · 7.81 Impact Factor