Fatty Acid Oxidation Is Essential for Egg Production by the Parasitic Flatworm Schistosoma mansoni.

Trudeau Institute, Saranac Lake, New York, United States of America.
PLoS Pathogens (Impact Factor: 8.06). 10/2012; 8(10):e1002996. DOI: 10.1371/journal.ppat.1002996
Source: PubMed

ABSTRACT Schistosomes, parasitic flatworms that cause the neglected tropical disease schistosomiasis, have been considered to have an entirely carbohydrate based metabolism, with glycolysis playing a dominant role in the adult parasites. However, we have discovered a close link between mitochondrial oxygen consumption by female schistosomes and their ability to produce eggs. We show that oxygen consumption rates (OCR) and egg production are significantly diminished by pharmacologic inhibition of carnitine palmitoyl transferase 1 (CPT1), which catalyzes a rate limiting step in fatty acid β-oxidation (FAO) and by genetic loss of function of acyl CoA synthetase, which complexes with CPT1 and activates long chain FA for use in FAO, and of acyl CoA dehydrogenase, which catalyzes the first step in FAO within mitochondria. Declines in OCR and egg production correlate with changes in a network of lipid droplets within cells in a specialized reproductive organ, the vitellarium. Our data point to the importance of regulated lipid stores and FAO for the compartmentalized process of egg production in schistosomes.


Available from: Bart Everts, Jul 30, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Appropriate nutrient response is essential for growth and reproduction. Under favorable nutrient conditions, the C. elegans nuclear receptor DAF-12 is activated by dafachronic acids, hormones that commit larvae to reproductive growth. Here, we report that in addition to its well-studied role in controlling developmental gene expression, the DAF-12 endocrine system governs expression of a gene network that stimulates the aerobic catabolism of fatty acids. Thus, activation of the DAF-12 transcriptome coordinately mobilizes energy stores to permit reproductive growth. DAF-12 regulation of this metabolic gene network is conserved in the human parasite, Strongyloides stercoralis, and inhibition of specific steps in this network blocks reproductive growth in both of the nematodes. Our study provides a molecular understanding for metabolic adaptation of nematodes to their environment, and suggests a new therapeutic strategy for treating parasitic diseases.
    PLoS Genetics 03/2015; 11(3):e1005027. DOI:10.1371/journal.pgen.1005027 · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Two platyhelminths of biomedical and commercial significance are Schistosoma mansoni (blood fluke) and Fasciola hepatica (liver fluke). These related trematodes are responsible for the chronic neglected tropical diseases schistosomiasis and fascioliasis, respectively. As no vaccine is currently available for anti-flukicidal immunoprophylaxis, current treatment is mediated by mono-chemical chemotherapy in the form of mass drug administration (MDA) (praziquantel for schistosomiasis) or drenching (triclabendazole for fascioliasis) programmes. This overreliance on single chemotherapeutic classes has dramatically limited the number of novel chemical entities entering anthelmintic drug discovery pipelines, raising significant concerns for the future of sustainable blood and liver fluke control. Here we demonstrate that 7-keto-sempervirol, a diterpenoid isolated from Lycium chinense, has dual anthelmintic activity against related S. mansoni and F. hepatica trematodes. Using a microtiter plate-based helminth fluorescent bioassay (HFB), this activity is specific (Therapeutic index = 4.2, when compared to HepG2 cell lines) and moderately potent (LD50 = 19.1 μM) against S. mansoni schistosomula cultured in vitro. This anti-schistosomula effect translates into activity against both adult male and female schistosomes cultured in vitro where 7-keto-sempervirol negatively affects motility/behaviour, surface architecture (inducing tegumental holes, tubercle swelling and spine loss/shortening), oviposition rates and egg morphology. As assessed by the HFB and microscopic phenotypic scoring matrices, 7-keto-sempervirol also effectively kills in vitro cultured F. hepatica newly excysted juveniles (NEJs, LD50 = 17.7 μM). Scanning electron microscopy (SEM) evaluation of adult F. hepatica liver flukes co-cultured in vitro with 7-keto-sempervirol additionally demonstrates phenotypic abnormalities including breaches in tegumental integrity and spine loss. 7-keto-sempervirol negatively affects the viability and phenotype of two related pathogenic trematodes responsible for significant human and animal infectious diseases. This plant-derived, natural product is also active against both larval and adult developmental forms. As such, the data collectively indicate that 7-keto-sempervirol is an important starting point for anthelmintic drug development. Medicinal chemistry optimisation of more potent 7-keto-sempervirol analogues could lead to the identification of novel chemical entities useful for future combinatorial or replacement anthelmintic control.
    PLoS Neglected Tropical Diseases 03/2015; 9(3):e0003604. DOI:10.1371/journal.pntd.0003604 · 4.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity presents a major health hazard of the 21st century. It promotes co-morbid diseases such as heart disease, type 2 diabetes, obstructive sleep apnea, certain types of cancer, and osteoarthritis. Excessive energy intake, physical inactivity, and genetic susceptibility are main causal factors for obesity, while gene mutations, endocrine disorders, medication, or psychiatric illnesses may be underlying causes in some cases. The development and maintenance of obesity may involve central pathophysiological mechanisms such as impaired brain circuit regulation and neuroendocrine hormone dysfunction. Dieting and physical exercise offer the mainstays of obesity treatment, and anti-obesity drugs may be taken in conjunction to reduce appetite or fat absorption. Bariatric surgeries may be performed in overtly obese patients to lessen stomach volume and nutrient absorption, and induce faster satiety. This review provides a summary of literature on the pathophysiological studies of obesity and discusses relevant therapeutic strategies for managing obesity.
    Nutrients 11/2014; 6(11):5153-5183. DOI:10.3390/nu6115153 · 3.15 Impact Factor