Article

Effects of sucrose on the extracellular matrix of plaque-like biofilm formed in vivo, studied by proteomic analysis.

Piracicaba Dental School, UNICAMP, Piracicaba, Brazil.
Caries Research (Impact Factor: 2.5). 11/2008; 42(6):435-43. DOI: 10.1159/000159607
Source: PubMed

ABSTRACT Previous studies have shown that sucrose promotes changes in the composition of the extracellular matrix (ECM) of plaque-like biofilm (PLB), but its effect on protein expression has not been studied in vivo. Therefore, the protein compositions of ECM of PLB formed with and without sucrose exposure were analyzed by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). For this purpose, a crossover study was conducted during two phases of 14 days each, during which a volunteer wore a palatal appliance containing eight enamel blocks for PLB accumulation. In each phase, a 20% sucrose solution or distilled and deionized water (control) were extraorally dripped onto the blocks 8x/day. On the 14th day, the PLB were collected, the ECM proteins were extracted, separated by two-dimensional gel electrophoresis, digested by in-gel trypsin and MALDI-TOF MS analyzed. In the ECM of PLB formed under sucrose exposure, the following changes compared with the control PLB were observed: (1) the presence of upregulated proteins that may be involved in bacterial response to environmental changes induced by sucrose and (2) the absence of calcium-binding proteins that may partly explain the low inorganic concentration found in ECM of PLB formed under sucrose exposure. The findings showing that sucrose affected the ECM protein composition of PLB in vivo provide further insight into the unique cariogenic properties of this dietary carbohydrate.

0 Bookmarks
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We evaluated, by proteomic analysis, whether the chemical changes provoked on enamel by acidulated phosphate fluoride (APF) application alter the protein composition of acquired enamel pellicle. Enamel slabs, pretreated with distilled water (negative control), phosphoric acid (active control) or APF solution, were immersed in human saliva for pellicle formation. The adsorbed proteins were extracted and analyzed by liquid chromatography-mass spectrometry/mass spectrometry. Fifty-six proteins were identified, 12 exclusive to APF and 11 to phosphoric acid. APF decreased the concentration of histatin-1, but increased the concentration of S100-A9, which is confirmed by immunoblotting. The findings suggest that APF application changes the acquired enamel pellicle composition.
    Caries Research 01/2013; 47(3):251-258. · 2.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Analysis of the metaproteome of microbial communities is important to provide an insight of community physiology and pathogenicity. This study evaluated the metaproteome of endodontic infections associated with acute apical abscesses and asymptomatic apical periodontitis lesions. Proteins persisting or expressed after root canal treatment were also evaluated. Finally, human proteins associated with these infections were identified. Samples were taken from root canals of teeth with asymptomatic apical periodontitis before and after chemomechanical treatment using either NaOCl or chlorhexidine as the irrigant. Samples from abscesses were taken by aspiration of the purulent exudate. Clinical samples were processed for analysis of the exoproteome by using two complementary mass spectrometry platforms: nanoflow liquid chromatography coupled with linear ion trap quadrupole Velos Orbitrap and liquid chromatography-quadrupole time-of-flight. A total of 308 proteins of microbial origin were identified. The number of proteins in abscesses was higher than in asymptomatic cases. In canals irrigated with chlorhexidine, the number of identified proteins decreased substantially, while in the NaOCl group the number of proteins increased. The large majority of microbial proteins found in endodontic samples were related to metabolic and housekeeping processes, including protein synthesis, energy metabolism and DNA processes. Moreover, several other proteins related to pathogenicity and resistance/survival were found, including proteins involved with adhesion, biofilm formation and antibiotic resistance, stress proteins, exotoxins, invasins, proteases and endopeptidases (mostly in abscesses), and an archaeal protein linked to methane production. The majority of human proteins detected were related to cellular processes and metabolism, as well as immune defense. Interrogation of the metaproteome of endodontic microbial communities provides information on the physiology and pathogenicity of the community at the time of sampling. There is a growing need for expanded and more curated protein databases that permit more accurate identifications of proteins in metaproteomic studies.
    PLoS ONE 01/2013; 8(10):e76108. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite all the dental information acquired over centuries and the importance of proteome research, the cross-link between these two areas only emerged around mid-nineties. Proteomic tools can help dentistry in the identification of risk factors, early diagnosis, prevention, and systematic control that will promote the evolution of treatment in all dentistry specialties. This review mainly focuses on the evolution of dentistry in different specialties based on proteomic research and how these tools can improve knowledge in dentistry. The subjects covered are an overview of proteomics in dentistry, specific information on different fields in dentistry (dental structure, restorative dentistry, endodontics, periodontics, oral pathology, oral surgery, and orthodontics) and future directions. There are many new proteomic technologies that have never been used in dentistry studies and some dentistry areas that have never been explored by proteomic tools. It is expected that a greater integration of these areas will help to understand what is still unknown in oral health and disease. J. Cell. Physiol. 228: 2271-2284, 2013. © 2013 Wiley Periodicals, Inc.
    Journal of Cellular Physiology 12/2013; 228(12):2271-84. · 3.87 Impact Factor

Full-text (2 Sources)

Download
17 Downloads
Available from
Jun 2, 2014