Spontaneous colitis occurrence in transgenic mice with altered B7-mediated costimulation.

Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
The Journal of Immunology (Impact Factor: 5.36). 11/2008; 181(8):5278-88. DOI: 10.4049/jimmunol.181.8.5278
Source: PubMed

ABSTRACT The B7 costimulatory molecules govern many aspects of T cell immune responses by interacting with CD28 for costimulation, but also with CTLA-4 for immune suppression. Although blockade of CTLA-4 with Ab in humans undergoing cancer immune therapy has led to some cases of inflammatory bowel disease, spontaneous animal models of colitis that depend upon modulation of B7 interactions have not been previously described. In this study, we demonstrate that mice expressing a soluble B7-2 Ig Fc chimeric protein spontaneously develop colitis that is dependent on CD28-mediated costimulation of CD4(+) T cells. We show that the chimeric protein has mixed agonistic/antagonist properties, and that it acts in part by blocking the cell intrinsic effects on T cell activation of engagement of CTLA-4. Disease occurred in transgenic mice that lack expression of the endogenous B7 molecules (B7 double knock-out mice), because of the relatively weak costimulatory delivered by the chimeric protein. Surprisingly, colitis was more severe in this context, which was associated with the decreased number of Foxp3(+) regulatory T cells in transgenic B7 double knock-out mice. This model provides an important tool for examining how B7 molecules and their effects on CTLA-4 modulate T cell function and the development of inflammatory diseases.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory bowel disease is a condition of acute and chronic inflammation of the gut. An important factor contributing to pathogenesis is a dysregulated mucosal immunity against commensal bacteria and fungi. Host pattern-recognition receptors (PRRs) sense commensals in the gut and are involved in maintaining the balance between controlled responses to pathogens and overwhelming innate immune activation. C-type lectin receptors (CLRs) are PRRs recognizing glycan structures on pathogens and self-antigens. Here we examined the role of the murine CLR specific intracellular adhesion molecule-3 grabbing non-integrin homolog-related 3 (SIGNR3) in the recognition of commensals and its involvement in intestinal immunity. SIGNR3 is the closest murine homolog of the human dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) receptor recognizing similar carbohydrate ligands such as terminal fucose or high-mannose glycans. We discovered that SIGNR3 recognizes fungi present in the commensal microbiota. To analyze whether this interaction impacts the intestinal immunity against microbiota, the dextran sulfate sodium-induced colitis model was employed. SIGNR3(-/-) mice exhibited an increased weight loss associated with more severe colitis symptoms compared to wild-type control mice. The increased inflammation in SIGNR3(-/-) mice was accompanied by a higher level of TNF-α in colon. Our findings demonstrate for the first time that SIGNR3 recognizes intestinal fungi and has an immune regulatory role in colitis.
    Frontiers in Immunology 07/2013; 4:196. DOI:10.3389/fimmu.2013.00196
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulatory T (Treg) cells, which maintain immune homeostasis and self-tolerance, form an immunological synapse (IS) with antigen-presenting cells (APCs). However, signaling events at the Treg cell IS remain unknown. Here we show that the kinase PKC-η associated with CTLA-4 and was recruited to the Treg cell IS. PKC-η-deficient Treg cells displayed defective suppressive activity, including suppression of tumor immunity but not of autoimmune colitis. Phosphoproteomic and biochemical analysis revealed an association between CTLA-4-PKC-η and the GIT2-αPIX-PAK complex, an IS-localized focal adhesion complex. Defective activation of this complex in PKC-η-deficient Treg cells was associated with reduced depletion of CD86 from APCs by Treg cells. These results reveal a CTLA-4-PKC-η signaling axis required for contact-dependent suppression and implicate this pathway as a potential cancer immunotherapy target.
    Nature Immunology 04/2014; DOI:10.1038/ni.2866 · 24.97 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: IL-27, an IL-12 family cytokine, has pleiotropic functions in the differentiation and expansion of CD4(+) T cell subsets. In this study, we discovered a novel function of IL-27. CD4(+)CD45RB(high) T cells from mice deficient for the α-chain of IL-27 receptor failed to induce colitis in Rag(-/-) recipients, because of an inability of activated donor cells to survive. Interestingly, IL-27 was indispensable for the prevention of colitis by regulatory T cells, also because of a defect in long-term cell survival. IL-27 affected the survival of activated T lymphocytes, rather than promoting cell proliferation, by inhibiting Fas-mediated activation-induced T cell death, acting through the STAT3 signaling pathway. The addition of IL-27 during activation resulted in an increased cell number, which was correlated with decreased activation of both caspases 3 and 8. This prosurvival effect was attributed to downregulation of FasL and to the induction of the antiapoptotic protein cFLIP. Although activation induced cell death is an important mechanism for the maintenance of immunological homeostasis, protection of lymphocytes from excessive cell death is essential for effective immunity. Our data indicate that IL-27 has a crucial role in the inhibition of activation-induced cell death, thereby permitting Ag-driven T cell expansion.
    The Journal of Immunology 01/2013; 190(4). DOI:10.4049/jimmunol.1201017 · 5.36 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014