Article

Orai1 (CRACM1) is the platelet SOC channel and essential for pathological thrombus formation.

Rudolf Virchow Center, DFG Research Center for Experimental Biomedicine, Würzburg, Germany.
Blood (Impact Factor: 9.78). 11/2008; 113(9):2056-63. DOI: 10.1182/blood-2008-07-171611
Source: PubMed

ABSTRACT Platelet activation and aggregation at sites of vascular injury are essential for primary hemostasis, but are also major pathomechanisms underlying myocardial infarction and stroke. Changes in [Ca(2+)](i) are a central step in platelet activation. In nonexcitable cells, receptor-mediated depletion of intracellular Ca(2+) stores triggers Ca(2+) entry through store-operated calcium (SOC) channels. STIM1 has been identified as an endoplasmic reticulum (ER)-resident Ca(2+) sensor that regulates store-operated calcium entry (SOCE) in immune cells and platelets, but the identity of the platelet SOC channel has remained elusive. Orai1 (CRACM1) is the recently discovered SOC (CRAC) channel in T cells and mast cells but its role in mammalian physiology is unknown. Here we report that Orai1 is strongly expressed in human and mouse platelets. To test its role in blood clotting, we generated Orai1-deficient mice and found that their platelets display severely defective SOCE, agonist-induced Ca(2+) responses, and impaired activation and thrombus formation under flow in vitro. As a direct consequence, Orai1 deficiency in mice results in resistance to pulmonary thromboembolism, arterial thrombosis, and ischemic brain infarction, but only mild bleeding time prolongation. These results establish Orai1 as the long-sought platelet SOC channel and a crucial mediator of ischemic cardiovascular and cerebrovascular events.

0 Bookmarks
 · 
146 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Classical effects of mineralocorticoids include stimulation of Na(+) reabsorption and K(+) secretion in the kidney and other epithelia including colon and several glands. Moreover, mineralocorticoids enhance the excretion of Mg(2+) and renal tubular H(+) secretion. The renal salt retention following mineralocorticoid excess leads to extracellular volume expansion and hypertension. The increase of blood pressure following mineralocorticoid excess is, however, not only the result of volume expansion but may result from stiff endothelial cell syndrome impairing the release of vasodilating nitric oxide. Beyond that, mineralocorticoids are involved in the regulation of a wide variety of further functions, including cardiac fibrosis, platelet activation, neuronal function and survival, inflammation as well as vascular and tissue fibrosis and calcification. Those functions are briefly discussed in this short introduction to the special issue. Beyond that, further contributions of this special issue amplify on mineralocorticoid-induced sodium appetite and renal salt retention, the role of mineralocorticoids in the regulation of acid-base balance, the involvement of aldosterone and its receptors in major depression, the mineralocorticoid stimulation of inflammation and tissue fibrosis and the effect of aldosterone on osteoinductive signaling and vascular calcification. Clearly, still much is to be learned about the various ramifications of mineralocorticoid-sensitive physiology and pathophysiology. © 2014 S. Karger AG, Basel.
    Nephron Physiology 11/2014; 128(1-2). DOI:10.1159/000368263 · 1.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In contrast to other Classical Transient Receptor Potential TRPC channels the function of TRPC1 as an ion channel is a matter of debate, because it is often difficult to obtain substantial functional signals over background in response to over-expression of TRPC1 alone. Along these lines, heterologously expressed TRPC1 is poorly translocated to the plasma membrane as a homotetramer and may not function on its own physiologically, but may rather be an important linker and regulator protein in heteromeric TRPC channel tetramers. However, due to the lack of specific TRPC1 antibodies able to detect native TRPC1 channels in primary cells, identification of functional TRPC1 containing heteromeric TRPC channel complexes in the plasma membrane is still challenging. Moreover, an extended TRPC1 cDNA, which was recently discovered, may seriously question results obtained in heterologous expression systems transfected with shortened cDNA versions. Therefore, this review will focus on the current status of research on TRPC1 function obtained in primary cells and a TRPC1-deficient mouse model.
    12/2014; 3(4):939-962. DOI:10.3390/cells3040939
  • Frontiers in Bioscience 01/2011; 16(1):2144. DOI:10.2741/3844 · 4.25 Impact Factor

Full-text

Download
59 Downloads
Available from
May 26, 2014