Musculoskeletal allograft risks and recalls in the United States

Neuroscience Institute, Center for Spine Health, The Cleveland Clinic, OH 44195, USA.
The Journal of the American Academy of Orthopaedic Surgeons (Impact Factor: 2.4). 11/2008; 16(10):559-65.
Source: PubMed

ABSTRACT There have been several improvements to the US tissue banking industry over the past decade. Tissue banks had limited active government regulation until 1993, at which time the US Food and Drug Administration began regulatory oversight because of reports of disease transmission from allograft tissues. Reports in recent years of disease transmission associated with the use of allografts have further raised concerns about the safety of such implants. A retrospective review of allograft recall data was performed to analyze allograft recall by tissue type, reason, and year during the period from January 1994 to June 30, 2007. During the study period, more than 96.5% of all allograft tissues recalled were musculoskeletal. The reasons underlying recent musculoskeletal tissue recalls include insufficient or improper donor evaluation, contamination, recipient infection, and positive serologic tests. Infectious disease transmission following allograft implantation may occur if potential donors are not adequately evaluated or screened serologically during the prerecovery phase and if the implant is not sterilized before implantation.

  • Source
    • "have reported that scAAV-BMP2-coated allografts can heal defects comparably to autograft treatment, allograft treatment still poses some drawbacks, including the possibility of disease transmission (Mroz et al. 2008) and a lack of porosity throughout the cortices, thus limiting vascular invasion. Additionally, the nonporous cortical surfaces of allograft bone prohibit the uniform distribution of coated AAV particles (Yazici et al. 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Biomaterial scaffolds functionalized to stimulate endogenous repair mechanisms via the incorporation of osteogenic cues offer a potential alternative to bone grafting for the treatment of large bone defects. We first quantified the ability of a self-complementary adeno-associated viral vector encoding bone morphogenetic protein 2 (scAAV2.5-BMP2) to enhance human stem cell osteogenic differentiation in vitro. In two-dimensional culture, scAAV2.5-BMP2-transduced human mesenchymal stem cells (hMSCs) displayed significant increases in BMP2 production and alkaline phosphatase activity compared with controls. hMSCs and human amniotic-fluid-derived stem cells (hAFS cells) seeded on scAAV2.5-BMP2-coated three-dimensional porous polymer Poly(ε-caprolactone) (PCL) scaffolds also displayed significant increases in BMP2 production compared with controls during 12 weeks of culture, although only hMSC-seeded scaffolds displayed significantly increased mineral formation. PCL scaffolds coated with scAAV2.5-BMP2 were implanted into critically sized immunocompromised rat femoral defects, both with or without pre-seeding of hMSCs, representing ex vivo and in vivo gene therapy treatments, respectively. After 12 weeks, defects treated with acellular scAAV2.5-BMP2-coated scaffolds displayed increased bony bridging and had significantly higher bone ingrowth and mechanical properties compared with controls, whereas defects treated with scAAV2.5-BMP2 scaffolds pre-seeded with hMSCs failed to display significant differences relative to controls. When pooled, defect treatment with scAAV2.5-BMP2-coated scaffolds, both with or without inclusion of pre-seeded hMSCs, led to significant increases in defect mineral formation at all time points and increased mechanical properties compared with controls. This study thus presents a novel acellular bone-graft-free endogenous repair therapy for orthotopic tissue-engineered bone regeneration.
    Cell and Tissue Research 06/2011; 347(3):575-88. DOI:10.1007/s00441-011-1197-3 · 3.33 Impact Factor
  • Source
    • "no need for additional surgery, " off the shelf " availability, size of graft material). However, significant drawbacks such as worldwide donor shortage (Greenwald et al., 2001) and associated risk of disease transmission (Mroz et al., 2008) ensure that allografting is insufficient as a viable long-term approach to bone autografting. Focus has recently switched towards the use of alternative approaches to attempt to promote and facilitate the body's own bone tissue healing ability. "
    [Show abstract] [Hide abstract]
    ABSTRACT: There is an enduring and unmet need for a bioactive, load-bearing tissue-engineering scaffold, which is biocompatible, biodegradable and capable of facilitating and promoting osteogenesis when implanted in vivo. This study set out to develop a biomimetic scaffold by incorporating osteoinductive hydroxyapatite (HA) particles into a highly porous and extremely biocompatible collagen-based scaffold developed within our laboratory over the last number of years to improve osteogenic performance. Specifically we investigated how the addition of discrete quantities of HA affected scaffold porosity, interconnectivity, mechanical properties, in vitro mineralisation and in vivo bone healing potential. The results show that the addition of HA up to a 200 weight percentage (wt%) relative to collagen content led to significantly increased scaffold stiffness and pore interconnectivity (approximately 10 fold) while achieving a scaffold porosity of 99%. In addition, this biomimetic collagen-HA scaffold exhibited significantly improved bioactivity, in vitro mineralisation after 28 days in culture, and in vivo healing of a critical-sized bone defect. These findings demonstrate the regenerative potential of these biodegradable scaffolds as viable bone graft substitute materials, comprised only of bone’s natural constituent materials, and capable of promoting osteogenesis in vitro and in vivo repair of critical-sized bone defects.
    European cells & materials 07/2010; 20. · 4.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many approaches are used in the repair of skeletal defects in reconstructive orthopaedic surgery, and bone grafting is involved in virtually every procedure. Autografting remains the gold standard for replacing bone loss. However, the limited amount of bone that can be harvested and the morbidity associated with that procedure are major constraints to the clinical use of autografts. In contrast, bone allografts can be used in any kind of surgery, whether involving minor defects or major bone loss. Cortical strut allografts unite to host bone through callus formation, restoring bone stock and can be used as an onlay biological plate. These struts can be made from hemicylinders of tibia being fixed to host bone by circumferential metallic cables or by screws. The purpose of this study was to analyze the radiographic outcomes of twelve cryopreserved cortical onlay strut allografts, used in a group of nine patients, for revision hip arthroplasty of the femoral side, to stabilize femoral periprosthetic fractures, to reinforce poor cortical bone and to treat one atrophic femoral nonunion. The average follow-up period was 4.3 years (range, 1.6 to 9 years). No fractures, nonunions or progressive resorption of the bone allografts were observed. All struts were incorporated to the native femur with minimal resorption, within the first year after surgery. There was no failure of any of the allograft reconstructions.The results obtained show that cortical onlay strut allografts, either alone or in conjunction with metallic plate or cancellous bone allografts, are a valuable adjunct for reconstructive surgery of the hip and to treat atrophic femoral nonunion.
    Acta reumatologica portuguesa 36(1):24-8. · 0.83 Impact Factor