Dysregulation of local stem/progenitor cells as a common cellular mechanism for heterotopic ossification.

Department of Neurology, Northwestern University Feinberg Medical School, Chicago, Illinois 60611-3008, USA.
Stem Cells (Impact Factor: 7.7). 11/2008; 27(1):150-6. DOI: 10.1634/stemcells.2008-0576
Source: PubMed

ABSTRACT Heterotopic ossification (HO), the abnormal formation of true marrow-containing bone within extraskeletal soft tissues, is a serious bony disorder that may be either acquired or hereditary. We utilized an animal model of the genetic disorder fibrodysplasia ossificans progressiva to examine the cellular mechanisms underlying HO. We found that HO in these animals was triggered by soft tissue injuries and that the effects were mediated by macrophages. Spreading of HO beyond the initial injury site was mediated by an abnormal adaptive immune system. These observations suggest that dysregulation of local stem/progenitor cells could be a common cellular mechanism for typical HO irrespective of the signal initiating the bone formation.

Download full-text


Available from: Lixin Kan, Jan 15, 2014
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone graft substitutes such as calcium phosphates are subject to the innate inflammatory reaction, which may bear important consequences for bone regeneration. We speculate that the surface architecture of osteoinductive β-tricalcium phosphate (TCP) stimulates the differentiation of invading monocyte/macrophages into osteoclasts, and that these cells may be essential to ectopic bone formation. To test this, porous TCP cubes with either submicron-scale surface architecture known to induce ectopic bone formation (TCPs, positive control) or micron-scale, non-osteoinductive surface architecture (TCPb, negative control) were subcutaneously implanted on the backs of FVB strain mice for 12 weeks. Additional TCPs samples received local, weekly injections of liposome-encapsulated clodronate (TCPs + LipClod) to deplete invading monocyte/macrophages. TCPs induced osteoclast formation, evident by positive tartrate resistant acid phosphatase (TRAP) cytochemical staining and negative macrophage membrane marker F4/80 immunostaining. No TRAP positive cells were found in TCPb or TCPs + LipClod, only F4/80 positive macrophages and foreign body giant cells. TCPs stimulated subcutaneous bone formation in all implants, while no bone could be found in TCPb or TCPs + LipClod. In agreement, expression of bone and osteoclast gene markers was upregulated in TCPs versus both TCPb and TCPs + LipClod, which were equivalent. In summary, submicron-scale surface structure of TCP induced osteoclastogenesis and ectopic bone formation in a process that is blocked by monocyte/macrophage depletion.
    Biomaterials 06/2014; 35(19):5088–5097. DOI:10.1016/j.biomaterials.2014.03.013 · 8.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Like other tissue injuries, bone fracture triggers an inflammatory response, which plays an important role in skeletal repair. Inflammation is believed to have both positive and negative effects on bone repair, but the underlying cellular mechanisms are not well understood. To assess the role of inflammation on skeletal cell differentiation, we used mouse models of fracture repair that stimulate either intramembranous or endochondral ossification. In the first model, fractures are rigidly stabilized leading to direct bone formation, while in the second model, fracture instability causes cartilage and bone formation. We compared the inflammatory response in these two mechanical environments and found changes in the expression patterns of inflammatory genes and in the recruitment of inflammatory cells and osteoclasts. These results suggested that the inflammatory response could influence skeletal cell differentiation after fracture. We then exploited matrix metalloproteinase 9 (MMP9) that is expressed in inflammatory cells and osteoclasts, and which we previously showed is a potential regulator of cell fate decisions during fracture repair. Mmp9(-/-) mice heal stabilized fractures via endochondral ossification, while wild type mice heal via intramembranous ossification. In parallel, we observed increases in macrophages and T cells in the callus of Mmp9(-/-) compared to wild type mice. To assess the link between the profile of inflammatory cells and skeletal cell fate functionally, we transplanted Mmp9(-/-) mice with wild type bone marrow, to reconstitute a wild type hematopoietic lineage in interaction with the Mmp9(-/-) stroma and periosteum. Following transplantation, Mmp9(-/-) mice healed stabilized fractures via intramembranous ossification and exhibited a normal profile of inflammatory cells. Moreover, Mmp9(-/-) periosteal grafts healed via intramembranous ossification in wild type hosts, but healed via endochondral ossification in Mmp9(-/-) hosts. We observed that macrophages accumulated at the periosteal surface in Mmp9(-/-) mice, suggesting that cell differentiation in the periosteum is influenced by factors such as BMP2 that are produced locally by inflammatory cells. Taken together, these results show that MMP9 mediates indirect effects on skeletal cell differentiation by regulating the inflammatory response and the distribution of inflammatory cells, leading to the local regulation of periosteal cell differentiation.
    Bone 09/2012; 52(1):111-119. DOI:10.1016/j.bone.2012.09.018 · 4.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heterotopic ossification (HO) is the formation of marrow-containing bone outside of the normal skeleton. Acquired HO following traumatic events is a common and costly clinical complication. In contrast, hereditary HO is rarer, progressive, and life-threatening. Substantial effort has been directed towards understanding the mechanisms underlying HO and finding efficient treatments. However, one crucial limiting factor has been the lack of relevant animal models. This article reviews the major currently available animal models, summarizes some of the insights gained from these studies, and discusses the potential future challenges and directions in HO research.
    BioMed Research International 01/2011; 2011:309287. DOI:10.1155/2011/309287 · 2.71 Impact Factor