Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.

Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA.
Journal of the American Chemical Society (Impact Factor: 10.68). 11/2008; 130(43):14273-9. DOI: 10.1021/ja8059039
Source: PubMed

ABSTRACT Reproducible detection of a target molecule is demonstrated using temporally stable solution-phase silica-void-gold nanoparticles and surface-enhanced Raman scattering (SERS). These composite nanostructures are homogeneous (diameter = 45 +/- 4 nm) and entrap single 13 nm gold nanoparticle cores inside porous silica membranes which prevent electromagnetic coupling and aggregation between adjacent nanoparticles. The optical properties of the gold nanoparticle cores and structural changes of the composite nanostructures are characterized using extinction spectroscopy and transmission electron microscopy, respectively, and both techniques are used to monitor the formation of the silica membrane. The resulting nanostructures exhibit temporally stable optical properties in the presence of salt and 2-naphthalenethiol. Similar SERS spectral features are observed when 2-naphthalenethiol is incubated with both bare and membrane-encapsulated gold nanoparticles. Disappearance of the S-H Raman vibrational band centered at 2566 cm(-1) with the composite nanoparticles indicates that the target molecule is binding directly to the metal surface. Furthermore, these nanostructures exhibit reproducible SERS signals for at least a 2 h period. This first demonstration of utilizing solution-phase silica-void-gold nanoparticles as reproducible SERS substrates will allow for future fundamental studies in understanding the mechanisms of SERS using solution-phase nanostructures as well as for applications that involve the direct and reproducible detection of biological and environmental molecules.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Redox transformation reaction between aqueous AgNO3 and Mn(CH3COO)2 at low temperature (∼80 °C) has been adopted for industrial-scale production of uniform Ag–MnOOH composite nanowires for the first time. Varying amounts of incorporated Ag in the composite retain the 1D morphology of the composite. Nanowires upon annealing evolve Ag–MnO2 nanocomposites, once again with the retention of the parental morphology. Just 4 % of silver incorporation in the composite demonstrates metal-like conducting performance from the corresponding semiconducting material. Transition of MnO2 to Mn2O3 to Mn3O4 takes place upon heat treatment in relation to successive increase in Ag concentrations in the nanowires. The composites offer resistance to the observed oxide transformation. This is evidenced from the progressive increase in transition temperature. In situ Raman, ex situ thermal and XRD analysis corroborate the fact. The composite with 12 % Ag offers resistance to the transformation of MnO2, which is also verified from laser heating. Importantly, Ag nanoparticle incorporation is proved to offer a thermally stable and better surface enhanced Raman scattering (SERS) platform than the individual components. Both the Ag–MnOOH and Ag–MnO2 nanocomposites with 8 atomic % Ag show the best SERS enhancement (enhancement factor ∼1010). The observed enhancement relates to charge transfer as well as electromagnetic effects.
    Chemistry - A European Journal 05/2014; · 5.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Surface-enhanced Raman scattering (SERS) has become a mature vibrational spectroscopic technique during the last decades and the number of applications in the chemical, material, and in particular life sciences is rapidly increasing. This Review explains the basic theory of SERS in a brief tutorial and-based on original results from recent research-summarizes fundamental aspects necessary for understanding SERS and provides examples for the preparation of plasmonic nanostructures for SERS. Chemical applications of SERS are the centerpiece of this Review. They cover a broad range of topics such as catalysis and spectroelectrochemistry, single-molecule detection, and (bio)analytical chemistry.
    Angewandte Chemie International Edition 04/2014; · 11.34 Impact Factor
  • Source
    Bulletin- Korean Chemical Society 01/2011; 32(11). · 0.84 Impact Factor


Available from