Article

Cerebrospinal Fluid Dendritic Cells Infiltrate the Brain Parenchyma and Target the Cervical Lymph Nodes under Neuroinflammatory Conditions

INSERM, U842, Lyon, France.
PLoS ONE (Impact Factor: 3.53). 02/2008; 3(10):e3321. DOI: 10.1371/journal.pone.0003321
Source: PubMed

ABSTRACT In many neuroinflammatory diseases, dendritic cells (DCs) accumulate in several compartments of the central nervous system (CNS), including the cerebrospinal fluid (CSF). Myeloid DCs invading the inflamed CNS are thus thought to play a major role in the initiation and perpetuation of CNS-targeted autoimmune responses. We previously reported that, in normal rats, DCs injected intra-CSF migrated outside the CNS and reached the B-cell zone of cervical lymph nodes. However, there is yet no information on the migratory behavior of CSF-circulating DCs under neuroinflammatory conditions.
To address this issue, we performed in vivo transfer experiments in rats suffering from experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. EAE or control rats were injected intra-CSF with bone marrow-derived myeloid DCs labeled with the fluorescent marker carboxyfluorescein diacetate succinimidyl ester (CFSE). In parallel experiments, fluorescent microspheres were injected intra-CSF to EAE rats in order to track endogenous antigen-presenting cells (APCs). Animals were then sacrificed on day 1 or 8 post-injection and their brain and peripheral lymph nodes were assessed for the presence of microspheres(+) APCs or CFSE(+) DCs by immunohistology and/or FACS analysis. Data showed that in EAE rats, DCs injected intra-CSF substantially infiltrated several compartments of the inflamed CNS, including the periventricular demyelinating lesions. We also found that in EAE rats, as compared to controls, a larger number of intra-CSF injected DCs reached the cervical lymph nodes. This migratory behavior was accompanied by an accentuation of EAE clinical signs and an increased systemic antibody response against myelin oligodendrocyte glycoprotein, a major immunogenic myelin antigen.
Altogether, these results indicate that CSF-circulating DCs are able to both survey the inflamed brain and to reach the cervical lymph nodes. In EAE and maybe multiple sclerosis, CSF-circulating DCs may thus support the immune responses that develop within and outside the inflamed CNS.

1 Follower
 · 
94 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Immune surveillance in the central nervous system (CNS) was considered impossible because: (i) the brain parenchyma is separated from the blood circulation by the blood-brain barrier (BBB); (ii) the brain lacks lymphatic drainage and (iii) the brain displays low major histocompatibility complex class II (MHCII) expression. In this context, the BBB prevents entry of immune molecules and effector cells to the CNS. The absence of lymphatic vessels avoids CNS antigens from reaching the lymph nodes for lymphocyte presentation and activation. Finally, the low MHCII expression hinders effective antigen presentation and re-activation of T cells for a competent immune response. All these factors limit the effectiveness of the afferent and efferent arms necessary to carry out immune surveillance. Nevertheless, recent evidence supports that CNS is monitored by the immune system through a modified surveillance circuit; this work reviews these findings.
    Brain Behavior and Immunity 01/2012; 26(6):823-9. DOI:10.1016/j.bbi.2012.01.016 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) are a heterogeneous group of professional antigen presenting cells that lie in a nexus between innate and adaptive immunity because they recognize and respond to danger signals and subsequently initiate and regulate effector T-cell responses. Initially thought to be absent from the CNS, both plasmacytoid and conventional DCs as well as DC precursors have recently been detected in several CNS compartments where they are seemingly poised for responding to injury and pathogens. Additionally, monocyte-derived DCs rapidly accumulate in the inflamed CNS where they, along with other DC subsets, may function to locally regulate effector T-cells and/or carry antigens to CNS-draining cervical lymph nodes. In this review we highlight recent research showing that (a) distinct inflammatory stimuli differentially recruit DC subsets to the CNS; (b) DC recruitment across the blood-brain barrier (BBB) is regulated by adhesion molecules, growth factors, and chemokines; and (c) DCs positively or negatively regulate immune responses in the CNS.
    Advances in Experimental Medicine and Biology 01/2012; 946:309-33. DOI:10.1007/978-1-4614-0106-3_18 · 2.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the central nervous system (CNS) is considered to be an immunoprivileged site, it is susceptible to a host of autoimmune as well as neuroinflammatory disorders owing to recruitment of immune cells across the blood-brain barrier into perivascular and parenchymal spaces. Dendritic cells (DCs), which are involved in both primary and secondary immune responses, are the most potent immune cells in terms of antigen uptake and processing as well as presentation to T cells. In light of the emerging importance of DC traficking into the CNS, these cells represent good candidates for targeted immunotherapy against various neuroinflammatory diseases. This review focuses on potential physiological events and receptor interactions between DCs and the microvascular endothelial cells of the brain as they transmigrate into the CNS during degeneration and injury. A clear understanding of the underlying mechanisms involved in DC migration may advance the development of new therapies that manipulate these mechanistic properties via pharmacologic intervention. Furthermore, therapeutic validation should be in concurrence with the molecular imaging techniques that can detect migration of these cells in vivo. Since the use of noninvasive methods to image migration of DCs into CNS has barely been explored, we highlighted potential molecular imaging techniques to achieve this goal. Overall, information provided will bring this important leukocyte population to the forefront as key players in the immune cascade in the light of the emerging contribution of DCs to CNS health and disease.
    Journal of Neuroimmune Pharmacology 08/2011; 7(1):74-94. DOI:10.1007/s11481-011-9302-7 · 3.17 Impact Factor

Preview (3 Sources)

Download
0 Downloads
Available from