Article

Influenza-associated pediatric mortality in the United States: Increase of Staphylococcus aureus coinfection

Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
PEDIATRICS (Impact Factor: 5.3). 11/2008; 122(4):805-11. DOI: 10.1542/peds.2008-1336
Source: PubMed

ABSTRACT Pediatric influenza-associated death became a nationally notifiable condition in the United States during 2004. We describe influenza-associated pediatric mortality from 2004 to 2007, including an increase of Staphylococcus aureus coinfections.
Influenza-associated pediatric death is defined as a death of a child who is younger than 18 years and has laboratory-confirmed influenza. State and local health departments report to the Centers for Disease Control and Prevention demographic, clinical, and laboratory data on influenza-associated pediatric deaths.
During the 2004-2007 influenza seasons, 166 influenza-associated pediatric deaths were reported (n = 47, 46, and 73, respectively). Median age of the children was 5 years. Children often progressed rapidly to death; 45% died within 72 hours of onset, including 43% who died at home or in an emergency department. Of 90 children who were recommended for influenza vaccination, only 5 (6%) were fully vaccinated. Reports of bacterial coinfection increased substantially from 2004-2005 to 2006-2007 (6%, 15%, and 34%, respectively). S aureus was isolated from a sterile site or endotracheal tube culture in 1 case in 2004-2005, 3 cases in 2005-2006, and 22 cases in 2006-2007; 64% were methicillin-resistant S aureus. Children with S aureus coinfection were significantly older and more likely to have pneumonia and acute respiratory distress syndrome than those who were not coinfected.
Influenza-associated pediatric mortality is rare, but the proportion of S aureus coinfection identified increased fivefold over the past 3 seasons. Research is needed to identify risk factors for influenza coinfection with invasive bacteria and to determine the impact of influenza vaccination and antiviral agents in preventing pediatric mortality.

Full-text

Available from: Anthony E Fiore, Oct 13, 2014
0 Bookmarks
 · 
109 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new quaternary dicerium lithium/nickel disilicide, Ce2Li0.39Ni1.61Si2, crystallizes as a new structure type of intermetallic compounds closely related to the AlB2 family. The crystal-chemical interrelationships between parent AlB2-type, BaLiSi, ZrBeSi and the title compound are discussed using the Bärnighausen formalism. Two Ce atoms occupy sites of 3m. symmetry. The remainder, i.e. Ni, mixed Ni/Li and Si atoms, occupy sites of -6m2 symmetry. The environment of the Ce atom is an 18-vertex polyhedron and the Ni, Ni/Li and Si atoms are enclosed in tricapped trigonal prisms. The title structure can be assigned to class No. 10 (trigonal prism and its derivatives) according to the Krypyakevich classification scheme [Krypyakevich (1977). In Structure Types of Intermetallic Compounds. Moscow: Nauka]. The electronic structure of the title compound was calculated using the tight-binding linear muffin-tin orbital method in the atomic spheres approximation (TB-LMTO-ASA). Metallic bonding is dominant in this compound. The strongest interactions are Ni-Si and Ce-Si.
    06/2014; 70(Pt 6):622-626. DOI:10.1107/S2053229614011589
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Influenza is a common respiratory virus and Staphylococcus aureus frequently causes secondary pneumonia during influenza infection, leading to increased morbidity and mortality. Influenza has been found to attenuate subsequent Type 17 immunity, enhancing susceptibility to secondary bacterial infections. IL-27 is known to inhibit Type 17 immunity, suggesting a potential critical role for IL-27 in viral and bacterial co-infection.MethodsA murine model of influenza and Staphylococcus aureus infection was used to mimic human viral, bacterial co-infection. C57BL/6 wild-type, IL-27 receptor ¿ knock-out, and IL-10 knock-out mice were infected with Influenza H1N1 (A/PR/8/34) or vehicle for 6 days followed by challenge with Staphylococcus aureus or vehicle for 24 hours. Lung inflammation, bacterial burden, gene expression, and cytokine production were determined.ResultsIL-27 receptor ¿ knock-out mice challenged with influenza A had increased morbidity compared to controls, but no change in viral burden. IL-27 receptor ¿ knock-out mice infected with influenza displayed significantly decreased IL-10 production compared to wild-type. IL-27 receptor ¿ knock-out mice co-infected with influenza and S. aureus had improved bacterial clearance compared to wild-type controls. Importantly, there were significantly increased Type 17 responses and decreased IL-10 production in IL-27 receptor ¿ knock-out mice. Dual infected IL-10¿/¿ mice had significantly less bacterial burden compared to dual infected WT mice.Conclusions These data reveal that IL-27 regulates enhanced susceptibility to S. aureus pneumonia following influenza infection, potentially through the induction of IL-10 and suppression of IL-17.
    Respiratory Research 02/2015; 16(1):10. DOI:10.1186/s12931-015-0168-8 · 3.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Infection with influenza A virus can lead to increased susceptibility to subsequent bacterial infection, often with Streptococcus pneumoniae. Given the substantial modification of the lung environment that occurs following pathogen infection, there is significant potential for modulation of immune responses. In this study, we show that infection of mice with influenza virus, followed by the noninvasive EF3030 strain of Streptococcus pneumoniae, leads to a significant decrease in the virus-specific CD8(+) T cell response in the lung. Adoptive-transfer studies suggest that this reduction contributes to disease in coinfected animals. The reduced number of lung effector cells in coinfected animals was associated with increased death, as well as a reduction in cytokine production in surviving cells. Further, cells that retained the ability to produce IFN-γ exhibited a decreased potential for coproduction of TNF-α. Reduced cytokine production was directly correlated with a decrease in the level of mRNA. Negative regulation of cells in the mediastinal lymph node was minimal compared with that present in the lung, supporting a model of selective regulation in the tissue harboring high pathogen burden. These results show that entry of a coinfecting pathogen can have profound immunoregulatory effects on an ongoing immune response. Together, these findings reveal a novel dynamic interplay between concurrently infecting pathogens and the adaptive immune system.