Harvesting heat energy from asphalt pavements: development of and comparison between numerical models and experiment

International Journal of Sustainable Engineering 06/2012; 5(2):159-169. DOI: 10.1080/19397038.2011.574742


The use of flowing water in embedded pipes to harvest heat energy from asphalt pavements and thereby reducing its temperature and the urban heat island effect has been proposed. A successful use of such an approach would require a complete understanding of the effect and the interaction of various mechanisms such as conduction, convection and radiation and factors such as solar radiation, diameter of pipe and rate of flow. A large-scale experiment was conducted to understand such effects, and numerical modelling was conducted for prediction of temperature. The experiment was modelled using finite element method, and a good match was obtained between predicted and experimentally obtained results. Effects of pipe diameter and flow rate were also analysed. This model could be used in future for selection of appropriate levels of critical variables and hence successful implementation of this concept to sustainable pavements.

Download full-text


Available from: Rajib B. Mallick, Oct 30, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hydronic asphalt pavement (HAP) is an emerging technology for the purpose of harvesting solar energy in the summer and deicing the pavement in the winter. Increasing the thermal conductivity of pavement material is a fundamental technology to improve the operation efficiency of such novel system. In this paper, the influences of graphite on the thermal characteristics and anti-ageing properties of asphalt binders were experimentally investigated. A control asphalt binder (CAB) sample was prepared by the same weight ratio of asphalt and mineral filler. Experimental results indicated that the thermal conductivity and diffusivity increased linearly with the increasing of graphite content, while the specific heat presented a descending trend correspondingly. Although the storage stability of asphalt binders with graphite were better than the CAB sample, binders with mineral filler or graphite showed bad high temperature storage stability. Differences between the physical and rheological properties of the original asphalt binders and the aged samples illustrated that graphite improved the anti-ageing properties of asphalt binders.
    Construction and Building Materials 10/2014; 68:220–226. DOI:10.1016/j.conbuildmat.2014.06.069 · 2.30 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Solar energy is undoubtedly the environment friendly and inexhaustible energy resource for humans. The concept of hydronic asphalt pavement (HAP) is an emerging renewable energy technology, which provides an interesting method for solar energy utilization. The innovation of HAP is to mitigate a series of realistic problems related to the asphalt pavement as well as the depletion of fossil energy resource. Fluid circulating through the pipes network imbedded in the asphalt pavement can capture the solar energy and store for later use. This paper summaries the major achievements of the existing literatures about the HAP and gives some proposals for further investigations. Studies have confirmed the feasibility of harvesting solar energy, cooling the pavement, snow melting/deicing as well as air conditioning of buildings by applying innovation technologies on asphalt pavement. As seasonal energy storage technology is relatively mature at present, most of the literatures reviews focus on the influences of variables associated with system behavior as well as the heat transfer processes during snow melting and solar energy collection. Future work should aim to do more urgent issues involved with HAP application: construction technology, maintenance technology, and long-term performance. Solving these problems can strengthen the theoretical and practical understanding of HAP, and lead to more extensive applications.
    Renewable and Sustainable Energy Reviews 08/2015; 48. DOI:10.1016/j.rser.2015.04.029 · 5.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Conventional impervious pavements have dark surface and large thermal inertia. During summertime they tend to absorb and store solar radiation but negate the evaporative cooling, contributing to the development of urban heat island (UHI). The idea of using cool pavements to mitigate the UHI has gained momentum recently. This review synthesizes the existing definition, physical mechanism, and typical cooling techniques of cool pavements, presenting the influence of cool pavements on the urban thermal environment. Benefits, penalties, costs and policies for the applications of cool pavements are presented with special emphasis on reflective pavements and evaporative pavements. The review suggests that the definition of cool pavements remain incomplete; that the influence of cool pavements on the air temperature in the urban canopy layer is unknown; and that the impact of cool pavements on the thermal conditions of adjacent buildings and pedestrians remains unknown. Many speculations of using cool pavements to battle the UHI effect need refinements and validations. Heat-harvesting pavements seem interesting because they not only stay cool but harness renewable energy. However, the results from the heat-harvesting pavement prototype require scrutiny on the power output, durability, and lifetime of the pavement system. Future studies are expected to understanding the impacts of cool pavements on pedestrian thermal stress, on adjacent building's energy loads, and on the air temperature in the urban canopy layer.
    Renewable and Sustainable Energy Reviews 12/2015; 52:445-459. DOI:10.1016/j.rser.2015.07.177 · 5.90 Impact Factor