Article

Deletion of smn-1, the Caenorhabditis elegans ortholog of the spinal muscular atrophy gene, results in locomotor dysfunction and reduced lifespan.

MRC Functional Genomics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
Human Molecular Genetics (Impact Factor: 7.69). 11/2008; 18(1):97-104. DOI: 10.1093/hmg/ddn320
Source: PubMed

ABSTRACT Spinal muscular atrophy is the most common genetic cause of infant mortality and is characterized by degeneration of lower motor neurons leading to muscle wasting. The causative gene has been identified as survival motor neuron (SMN). The invertebrate model organism Caenorhabditis elegans contains smn-1, the ortholog of human SMN. Caenorhabditis elegans smn-1 is expressed in various tissues including the nervous system and body wall muscle, and knockdown of smn-1 by RNA interference is embryonic lethal. Here we show that the smn-1(ok355) deletion, which removes most of smn-1 including the translation start site, produces a pleiotropic phenotype including late larval arrest, reduced lifespan, sterility as well as impaired locomotion and pharyngeal activity. Mutant nematodes develop to late larval stages due to maternal contribution of the smn-1 gene product that allows to study SMN-1 functions beyond embryogenesis. Neuronal, but not muscle-directed, expression of smn-1 partially rescues the smn-1(ok355) phenotype. Thus, the deletion mutant smn-1(ok355) provides a useful platform for functional analysis of an invertebrate ortholog of the human SMN protein.

0 Bookmarks
 · 
90 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The determining factor of spinal muscular atrophy (SMA), the most common motor neuron degenerative disease of childhood, is the survival motor neuron (SMN) protein. SMN and its Gemin associates form a complex that is indispensible for the biogenesis of small nuclear ribonucleoproteins (snRNPs), which constitute the building blocks of spliceosomes. It is as yet unclear whether a decreased capacity of SMN in snRNP assembly, and, hence, transcriptome abnormalities, account for the specific neuromuscular phenotype in SMA. Across metazoa, the SMN-Gemins complex concentrates in multiple nuclear gems that frequently neighbour or overlap Cajal bodies. The number of gems has long been known to be a faithful indicator of SMN levels, which are linked to SMA severity. Intriguingly, a flurry of recent studies have revealed that depletion of this nuclear structure is also a signature feature of amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disease. This review discusses such a surprising crossover in addition to highlighting the most recent work on the intricate world of spliceosome building, which seems to be at the heart of motor neuron physiology and survival.
    CNS Neuroscience & Therapeutics 03/2014; · 4.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurodegenerative diseases share pathogenic mechanisms at the cellular level including protein misfolding, excitotoxicity and altered RNA homeostasis among others. Recent advances have shown that the genetic causes underlying these pathologies overlap, hinting at the existence of a genetic network for neurodegeneration. This is perhaps best illustrated by the recent discoveries of causative mutations for amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD). Once thought to be distinct entities, it is now recognized that these diseases exist along a genetic spectrum. With this wealth of discoveries comes the need to develop new genetic models of ALS and FTD to investigate not only pathogenic mechanisms linked to causative mutations, but to uncover potential genetic interactions that may point to new therapeutic targets. Given the conservation of many disease genes across evolution, Caenorhabditis elegans is an ideal system to investigate genetic interactions amongst these genes. Here we review the use of C. elegans to model ALS and investigate a putative genetic network for ALS/FTD that may extend to other neurological disorders.
    Frontiers in Genetics 01/2014; 5:85.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nematode Caenorhabditis elegans is a genetic model organism and the only animal with a complete nervous system wiring diagram. With only 302 neurons and 95 striated muscle cells, a rich array of mutants with defective locomotion and the facility for individual targeted gene knockdown by RNA interference, it lends itself to the exploration of gene function at nerve muscle junctions. With approximately 60% of human disease genes having a C. elegans homologue, there is growing interest in the deployment of lowcost, high-throughput, drug screens of nematode transgenic and mutant strains mimicking aspects of the pathology of devastating human neuromuscular disorders. Here we explore the contributions already made by C. elegans to our understanding of muscular dystrophies (Duchenne and Becker), spinal muscular atrophy, amyotrophic lateral sclerosis, Friedreich’s ataxia, inclusion body myositis and the prospects for contributions to other neuromuscular disorders. A bottleneck to low-cost, in vivo, large-scale chemical library screening for new candidate therapies has been rapid, automated, behavioural phenotyping. Recent progress in quantifying simple swimming (thrashing) movements is making such screening possible and is expediting the translation of drug candidates towards the clinic.
    Translational Neuroscience. 01/2010; 1(3):214-227.

Full-text (2 Sources)

Download
10 Downloads
Available from
May 31, 2014