Dosimetric measurements of Onyx embolization material for stereotactic radiosurgery

Radiation Physics Division, Department of Radiation Oncology, University of Michigan Hospital and Health Systems, 1500 East Medical Center Drive, Ann Arbor, Michigan 48109.
Medical Physics (Impact Factor: 2.64). 11/2012; 39(11):6672-81. DOI: 10.1118/1.4757918
Source: PubMed


Arteriovenous malformations are often treated with a combination of embolization and stereotactic radiosurgery. Concern has been expressed in the past regarding the dosimetric properties of materials used in embolization and the effects that the introduction of these materials into the brain may have on the quality of the radiosurgery plan. To quantify these effects, the authors have taken large volumes of Onyx 34 and Onyx 18 (ethylene-vinyl alcohol copolymer doped with tantalum) and measured the attenuation and interface effects of these embolization materials.

The manufacturer provided large cured volumes (∼28 cc) of both Onyx materials. These samples were 8.5 cm in diameter with a nominal thickness of 5 mm. The samples were placed on a block tray above a stack of solid water with an Attix chamber at a depth of 5 cm within the stack. The Attix chamber was used to measure the attenuation. These measurements were made for both 6 and 16 MV beams. Placing the sample directly on the solid water stack and varying the thickness of solid water between the sample and the Attix chamber measured the interface effects. The computed tomography (CT) numbers for bulk material were measured in a phantom using a wide bore CT scanner.

The transmission through the Onyx materials relative to solid water was approximately 98% and 97% for 16 and 6 MV beams, respectively. The interface effect shows an enhancement of approximately 2% and 1% downstream for 16 and 6 MV beams. CT numbers of approximately 2600-3000 were measured for both materials, which corresponded to an apparent relative electron density (RED) ρ(e) (w) to water of approximately 2.7-2.9 if calculated from the commissioning data of the CT scanner.

We performed direct measurements of attenuation and interface effects of Onyx 34 and Onyx 18 embolization materials with large samples. The introduction of embolization materials affects the dose distribution of a MV therapeutic beam, but should be of negligible consequence for effective thicknesses of less than 8 mm. The measured interface effects are also small, particularly at 6 MV. Large areas of high-density artifacts and low-density artifacts can cause errors in dose calculations and need to be identified and resolved during planning.

34 Reads
  • [Show abstract] [Hide abstract]
    ABSTRACT: A technique to reduce metallic implant artifacts on computed tomography scans is presented. The implant boundaries are determined semiautomatically; the missing projection data are replaced by linear interpolation. The complete procedure requires 1-2 minutes per scan. Images with greatly improved quality were obtained in the presence of surgical clips and pelvic implants; success is limited in highly structured regions, such as the facial skull.
    Radiology 09/1987; 164(2):576-7. DOI:10.1148/radiology.164.2.3602406 · 6.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To analyze the clinical and angiographic variables that affect the results of arteriovenous malformation (AVM) radiosurgery and to propose a new method of reporting patient outcomes after AVM radiosurgery. This method incorporates both the obliteration status of the AVMs and the postoperative neurological condition of the patient. Patient outcomes were defined as excellent (nidus obliteration and no new deficits), good (nidus obliteration with a new minor deficit), fair (nidus obliteration with a new major deficit), unchanged (incomplete nidus obliteration without a new deficit), poor (incomplete nidus obliteration with any new deficit), and dead. Two hundred twenty patients who underwent AVM radiosurgery at our center before 1992 were subjected to a multivariate analysis with patient outcomes as the dependent variable. Multivariate analysis determined four factors associated with successful AVM radiosurgery: smaller AVM volume (P=0.003), number of draining veins (P=0.001), younger patient age (P=0.0003), and hemispheric AVM location (P=0.002). Preradiosurgical embolization was a negative predictor of successful AVM radiosurgery (P=0.02). AVM obliteration without new neurological deficits can be achieved in at least 80% of patients with small volume, hemispheric AVMs after single-session AVM radiosurgery. Future studies on AVM radiosurgery should report patient outcomes in a fashion that incorporates all the factors involved in successful AVM radiosurgery.
    Neurosurgery 07/1998; 42(6):1239-44; discussion 1244-7. DOI:10.1097/00006123-199806000-00020 · 3.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A recent paper analyzed the sensitivity to various simulation parameters of the Monte Carlo simulations of nine beams from three major manufacturers of commercial medical linear accelerators, ranging in energy from 4-25 MV. In this work the nine models are used: to calculate photon energy spectra and average energy distributions and compare them to those published by Mohan et al. [Med. Phys. 12, 592-597 (1985)]; to separate the spectra into primary and scatter components from the primary collimator, the flattening filter and the adjustable collimators; and to calculate the contaminant-electron fluence spectra and the electron contribution to the depth-dose curves. Notwithstanding the better precision of the calculated spectra, they are similar to those calculated by Mohan et al. The three photon spectra at 6 MV from the machines of three different manufacturers show differences in their shapes as well as in the efficiency of bremsstrahlung production in the corresponding target and filter combinations. The contribution of direct photons to the photon energy fluence in a 10 x 10 field varies between 92% and 97%, where the primary collimator contributes between 0.6% and 3.4% and the flattening filter contributes between 0.6% and 4.5% to the head-scatter energy fluence. The fluence of the contaminant electrons at 100 cm varies between 5 x 10(-9) and 2.4 x 10(-7) cm(-2) per incident electron on target, and the corresponding spectrum for each beam is relatively invariant inside a 10 x 10 cm2 field. On the surface the dose from electron contamination varies between 5.7% and 11% of maximum dose and, at the depth of maximum dose, between 0.16% and 2.5% of maximum dose. The photon component of the percentage depth-dose at 10 cm depth is compared with the general formula provided by AAPM's task group 51 and confirms the claimed accuracy of 2%.
    Medical Physics 04/2002; 29(3):391-402. DOI:10.1118/1.1445413 · 2.64 Impact Factor
Show more