Article

The effect of SLCO1B1 polymorphism on repaglinide pharmacokinetics persists over a wide dose range.

Department of Clinical Pharmacology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland.
British Journal of Clinical Pharmacology (Impact Factor: 3.69). 10/2008; 66(6):818-25. DOI: 10.1111/j.1365-2125.2008.03287.x
Source: PubMed

ABSTRACT To establish whether the effect of SLCO1B1[encoding organic anion transporting polypeptide 1B1 (OATP1B1)] c.521T-->C (p.Val174Ala) polymorphism on the pharmacokinetics of repaglinide is dose-dependent.
Twelve healthy volunteers with the SLCO1B1 c.521TT genotype (controls) and eight with the c.521CC genotype ingested a single 0.25-, 0.5-, 1- or 2-mg dose of repaglinide in a dose-escalation study with a wash-out period of > or =1 week.
The mean area under the plasma concentration-time curve from time 0 to infinity (AUC(0-infinity)) of 0.25, 0.5, 1 or 2 mg repaglinide was 82% (95% confidence interval 47, 125), 72% (24, 138), 56% (24, 95) or 108% (59, 171) (P < or = 0.001) larger in participants with the SLCO1B1 c.521CC genotype than in those with the c.521TT genotype, respectively. Repaglinide peak plasma concentration and AUC(0-infinity) increased linearly along with repaglinide dose in both genotype groups (r > 0.88, P < 0.001). There was a tendency towards lower blood glucose concentrations after repaglinide administration in the participants with the c.521CC genotype than in those with the c.521TT genotype.
The effect of SLCO1B1 c.521T-->C polymorphism on the pharmacokinetics of repaglinide persists throughout the clinically relevant dose range.

1 Bookmark
 · 
118 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the effect of OATP1B1 genotype as a covariate on repaglinide pharmacokinetics and drug-drug interaction (DDIs) risk using a reduced physiologically-based pharmacokinetic (PBPK) model. Twenty nine mean plasma concentration-time profiles for SLCO1B1 c.521T>C were used to estimate hepatic uptake clearance (CLuptake) in different genotype groups applying a population approach in NONMEM v.7.2. Estimated repaglinide CLuptake corresponded to 217 and 113 μL/min/10(6) cells for SLCO1B1 c.521TT/TC and CC, respectively. A significant effect of OATP1B1 genotype was seen on CLuptake (48% reduction for CC relative to wild type). Sensitivity analysis highlighted the impact of CLmet and CLdiff uncertainty on the CLuptake optimization using plasma data. Propagation of this uncertainty had a marginal effect on the prediction of repaglinide OATP1B1-mediated DDI with cyclosporine; however, sensitivity of the predicted magnitude of repaglinide metabolic DDI was high. In addition, the reduced PBPK model was used to assess the effect of both CYP2C8*3 and SLCO1B1 c.521T>C on repaglinide exposure by simulations; power calculations were performed to guide prospective DDI and pharmacogenetic studies. The application of reduced PBPK model for parameter optimization and limitations of this process associated with the use of plasma rather than tissue profiles are illustrated.
    Pharmaceutical Research 03/2014; · 4.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bilirubin, a major end product of heme breakdown, is an important constituent of bile, responsible for its characteristic colour. Over recent decades, our understanding of bilirubin metabolism has expanded along with the processes of elimination of other endogenous and exogenous anionic substrates, mediated by the action of multiple transport systems at the sinusoidal and canalicular membrane of hepatocytes. Several inherited disorders characterised by impaired bilirubin conjugation (Crigler-Najjar syndrome type I and type II, Gilbert syndrome) or transport (Dubin-Johnson and Rotor syndrome) result in various degrees of hyperbilirubinemia of either the predominantly unconjugated or predominantly conjugated type. Moreover, disrupted regulation of hepatobiliary transport systems can explain jaundice in many acquired liver disorders. In this review, we discuss the recent data on liver bilirubin handling based on the discovery of the molecular basis of Rotor syndrome. The data show that a substantial fraction of bilirubin conjugates is primarily secreted by MRP3 at the sinusoidal membrane into the blood, from where they are subsequently reuptaken by sinusoidal membrane-bound organic anion transporting polypeptides OATP1B1 and OATP1B3. OATP1B proteins are also responsible for liver clearance of bilirubin conjugated in splanchnic organs, such as the intestine and kidney, and for a number of endogenous compounds, xenobiotics and drugs. Absence of one or both OATP1B proteins thus may have serious impact on toxicity of commonly used drugs cleared by this system such as statins, sartans, methotrexate or rifampicin. The liver-blood cycling of conjugated bilirubin is impaired in cholestatic and parenchymal liver diseases and this impairment most likely contributes to jaundice accompanying these disorders.
    World Journal of Gastroenterology 10/2013; 19(38):6398-6407. · 2.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Glinides, including repaglinide, nateglinide and mitiglinide, are a type of fasting insulin secretagogue that could help to mimic early-phase insulin release, thus providing improved control of the postprandial glucose levels. Glinides stimulate insulin secretion by inhibiting ATP-sensitive potassium channels in the pancreatic β-cell membrane. Although glinides have been widely used clinically and display excellent safety and efficacy, the response to glinides varies among individuals, which is partially due to genetic factors involved in drug absorption, distribution, metabolism and targeting. Several pharmacogenomic studies have demonstrated that variants of genes involved in the pharmacokinetics or pharmacodynamics of glinides are associated with the drug response. Polymorphisms of genes involved in drug metabolism, such as CYP2C9, CYP2C8 and SLCO1B1, may influence the efficacy of glinides and the incidence of adverse effects. In addition, Type 2 diabetes mellitus susceptibility genes, such as KCNQ1, PAX4 and BETA2, also influence the efficacy of glinides. In this article, we review and discuss current pharmacogenomics researches on glinides, and hopefully provide useful data and proof for clinical application.
    Pharmacogenomics 01/2015; 16(1):45-60. · 3.43 Impact Factor

Full-text (2 Sources)

Download
5 Downloads
Available from
Sep 19, 2014