Article

Induced pluripotent stem cells generated without viral integration.

Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, 185 Cambridge Street, Boston, MA 02114, USA.
Science (Impact Factor: 31.48). 10/2008; 322(5903):945-9. DOI: 10.1126/science.1162494
Source: PubMed

ABSTRACT Pluripotent stem cells have been generated from mouse and human somatic cells by viral expression of the transcription factors Oct4, Sox2, Klf4, and c-Myc. A major limitation of this technology is the use of potentially harmful genome-integrating viruses. We generated mouse induced pluripotent stem (iPS) cells from fibroblasts and liver cells by using nonintegrating adenoviruses transiently expressing Oct4, Sox2, Klf4, and c-Myc. These adenoviral iPS (adeno-iPS) cells show DNA demethylation characteristic of reprogrammed cells, express endogenous pluripotency genes, form teratomas, and contribute to multiple tissues, including the germ line, in chimeric mice. Our results provide strong evidence that insertional mutagenesis is not required for in vitro reprogramming. Adenoviral reprogramming may provide an improved method for generating and studying patient-specific stem cells and for comparing embryonic stem cells and iPS cells.

Full-text

Available from: Jochen Utikal, Aug 12, 2014
3 Followers
 · 
246 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Direct reprogramming technology has emerged as an outstanding technique for the generation of induced pluripotent stem (iPS) cells and various specialized cells directly from somatic cells of different species. Recent studies dissecting the molecular mechanisms of reprogramming have methodologically improved the quality, ease and efficiency of reprogramming and eliminated the need for genome modifications with integrating viral vectors. With these advancements, direct reprogramming technology has moved closer to clinical application. Here, we provide a comprehensive overview of the cutting-edge findings regarding distinct barriers of reprogramming to pluripotency, strategies to enhance reprogramming efficiency, and chemical reprogramming as one of the non-integrating approaches in iPS cell generation. In addition to direct transdifferentiation, pluripotency factor-induced transdifferentiation or cell activation and signaling directed (CASD) lineage conversion is described as a robust strategy for the generation of both tissue-specific progenitors and clinically relevant cell types. Then, we consider the possibility that a combined method of inhibition of roadblocks (e.g. p53, p21, p57, Mbd3, etc.), and application of enhancing factors in a chemical reprogramming paradigm would be a safe, reliable and effective approach in pluripotent reprogramming and transdifferentiation. Furthermore, with respect to the state of native, aberrant, and target gene regulatory networks in reprogrammed cell populations, CellNet is reviewed as a computational platform capable of evaluating the fidelity of reprogramming methods and refining current engineering strategies. Ultimately, we conclude that a faithful, highly efficient and integration-free reprogramming paradigm would provide powerful tools for research studies, drug-based induced regeneration, cell transplantation therapies and other regenerative medicine purposes.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myocardial infarction (MI) is associated with damage to the myocardium which results in a great loss of functional cardiomyocytes. As one of the most terminally differentiated organs, the endogenous regenerative potentials of adult hearts are extremely limited and insufficient to compensate for the myocardial loss occurring after MI. Consequentially, exogenous regenerative strategies, especially cell replacement therapy, have emerged and attracted increasing more attention in the field of cardiac tissue regeneration. A renewable source of seeding cells is therefore one of the most important subject in the field. Induced pluripotent stem cells (iPSCs), embryonic stem cell (ESC)-like cells that are derived from somatic cells by reprogramming, represent a promising candidate due to their high potentials for self-renewal, proliferation, differentiation and more importantly, they provide an invaluable method of deriving patient-specific pluripotent stem cells. Therefore, iPSC-based cardiac tissue regeneration and engineering has been extensively investigated in recent years. This review will discuss the achievements and current status in this field, including development of iPSC derivation, in vitro strategies for cardiac generation from iPSCs, cardiac application of iPSCs, challenges confronted at present as well as perspective in the future.
    11/2013; 1(1):6. DOI:10.1186/2050-490X-1-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ever since a technology to reprogram somatic cells into pluripotent stem cells was developed by Dr. Shinya Yamanaka’s group in 2006, its therapeutic potential has been extensively discussed. We now call the reprogrammed embryonic stem cell (ESC)-like cell an ‘induced pluripotent stem cell’ (iPSC). The beauty and power of the iPS in human case is that it avoids many ethical issues, in that unlike human ESCs (hESCs), iPSCs do not require destroying a human embryo to establish pluripotent cell lines. The iPSC holds many hopes that many human diseases may be treatable in the near future. On the other hand, there are still several issues that need to be solved prior to the therapeutic use of iPSCs in humans directly. The biggest hurdle is that, so far, there is lack of ways to completely exclude tumorigenic iPSC-derived cells. Additionally, there is an issue that immune rejection may occur, even in autologously grafted iPSCs, as was observed in monkey experiment. Nevertheless, iPSCs, combined with genetic manipulation, hold much promise that iPSCs may be used in cell therapy procedures and as tools for investigating underlying mechanisms of human diseases. This review will discuss recent progress in cellular reprogramming and its potential use in regenerative medicine.
    Fetal ovine model for in-situ esophagus tissue engineering 04/2014; 12(2):80-89. DOI:10.1007/s13770-014-0099-3 · 0.61 Impact Factor