Cloning, expression and subcellular distribution of a Rana grylio virus late gene encoding ERV1 homologue

State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Wuhan, China.
Molecular Biology Reports (Impact Factor: 2.02). 10/2008; 36(7):1651-9. DOI: 10.1007/s11033-008-9365-6
Source: PubMed


An essential for respiration and viability (ERV1) homologue, 88R, was cloned and characterized from Rana grylio virus (RGV). Database searches found its homologues in all sequenced iridoviruses, and sequence alignment revealed a highly conserved motif shared by all ERV1 family proteins: Cys-X-X-Cys. RT-PCR and western blot analysis revealed that 88R begins to transcribe and translate at 6 h postinfection (p.i.) and remains detectable at 48 h p.i. during RGV infection course. Furthermore, using drug inhibition analysis by a de novo protein synthesis inhibitor and a viral DNA replication inhibitor, RGV 88R was classified as a late (L) viral gene during the in vitro infection. 88R-EGFP fusion protein was observed in both the cytoplasm and nucleus of pEGFP-N3-88R transfected EPC cells. Although result of immunofluorescence is similar, 88R protein was not detected in viromatrix. Moreover, function of RGV 88R on virus replication were evaluated by RNAi assay. Nevertheless, effect of knockdown of RGV 88R expression on virus replication was not detected in cultured fish cell lines. Collectively, current data indicate that RGV 88R was a late gene of iridovirus encoding protein that distributed both the cytoplasm and nucleus.

3 Reads
  • Source
    • "Plasmids transfected GCO cells for NS80 or NS38 expression were collected and subjected to Western blot analysis as described previously [53]. Anti-FLAG antibodies (for NS80) and anti-HA antibodies (for NS38) were used as the primary antibody at a 1∶1000 dilution followed by alkaline phosphatase-conjugated goat anti-mouse IgG (H+L) antibody at a 1∶1000 dilution (Vector laboratories Inc) as the secondary antibody. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Replication and assembly of vertebrate reoviruses occur in specific intracellular compartments known as viral factories. Recently, NS88 and NS80, the nonstructural proteins from aquareoviruses, have been proposed to share common traits with µNS from orthoreoviruses, which are involved in the formation of viral factories. Methodology/Principal Findings In this study, the NS80 characteristics and its interactions with other viral components were investigated. We observed that the NS80 structure ensured its self-aggregation and selective recruitment of viral proteins to viral factories like structures (VFLS). The minimum amino acids (aa) of NS80 required for VFLS formation included 193 aa at the C-terminal. However, this truncated protein only contained one aa coil and located in the nucleus. Its N-terminal residual regions, aa 1–55 and aa 55–85, were required for recruiting viral nonstructural protein NS38 and structural protein VP3, respectively. A conserved N-terminal region of NS38, which was responsible for the interaction with NS80, was also identified. Moreover, the minimal region of C-terminal residues, aa 506–742 (Δ505), required for NS80 self-aggregation in the cytoplasm, and aa 550–742 (Δ549), which are sufficient for recruiting viral structure proteins VP1, VP2, and VP4 were also identified. Conclusions/Significance The present study shows detailed interactions between NS80 and NS38 or other viral proteins. Sequence and structure characteristics of NS80 ensures its self-aggregation to form VFLS (either in the cytoplasm or nucleus) and recruitment of viral structural or nonstructural proteins.
    PLoS ONE 05/2013; 8(5):e63737. DOI:10.1371/journal.pone.0063737 · 3.23 Impact Factor
  • Source
    • "Three duplex siRNAs targeted to 50L and a negative control (siNC) (Table 4, GenePharma, Shanghai, China) were chemically synthesized for knockdown of RGV 50L, and the experiment was carried out as described previously with some modifications [10], [23]. Briefly, EPC cells were cultured in 24-well plates at a density of about 8.0×105 cells/ml. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The complete genome of Rana grylio virus (RGV) was sequenced and analyzed recently, which revealed that RGV 50 L had homologues in many iridoviruses with different identities; however, the characteristics and functions of 50 L have not been studied yet. We cloned and characterized RGV50L, and revealed 50 L functions in virus assembly and gene regulation. 50 L encoded a 499-amino acid structural protein of about 85 kDa in molecular weight and contained a nuclear localization signal (NLS) and a helix- extension-helix motif. Drug inhibition assay demonstrated that 50 L was an immediate-early (IE) gene. Immuno-fluorescence assay revealed that 50 L appeared early and persisted in RGV-infected cells following two distribution patterns. One pattern was that 50 L exhibited a cytoplasm-nucleus- viromatrix distribution pattern, and mutagenesis of the NLS motif revealed that localization of 50 L in the nucleus was NLS-dependent; the other was that 50 L co-localized with viral matrix which plays important roles in virus assembly and the life circle of viruses. RGV 50L is a novel iridovirus IE gene encoded structural protein which plays important roles in virus assembly.
    PLoS ONE 08/2012; 7(8):e43033. DOI:10.1371/journal.pone.0043033 · 3.23 Impact Factor
  • Source
    • "Transfected cells were incubated 24 h at 25°C and then fixed and stained with Hoechst 33342 as described previously [51]. All samples were examined under a Leica DM IRB fluorescence microscope. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A virus was isolated from diseased turbot Scophthalmus maximus in China. Biophysical and biochemical assays, electron microscopy, and genome electrophoresis revealed that the virus belonged to the genus Aquareovirus, and was named Scophthalmus maximus reovirus (SMReV). To the best of our knowledge, no complete sequence of an aquareovirus from marine fish has been determined. Therefore, the complete characterization and analysis of the genome of this novel aquareovirus will facilitate further understanding of the taxonomic distribution of aquareovirus species and the molecular mechanism of its pathogenesis. The full-length genome sequences of SMReV were determined. It comprises eleven dsRNA segments covering 24,042 base pairs and has the largest S4 genome segment in the sequenced aquareoviruses. Sequence analysis showed that all of the segments contained six conserved nucleotides at the 5' end and five conserved nucleotides at the 3' end (5'-GUUUUA ---- UCAUC-3'). The encoded amino acid sequences share the highest sequence identities with the respective proteins of aquareoviruses in species group Aquareovirus A. Phylogenetic analysis based on the major outer capsid protein VP7 and RNA-dependent RNA polymerase were performed. Members in Aquareovirus were clustered in two groups, one from fresh water fish and the other from marine fish. Furthermore, a fusion associated small transmembrane (FAST) protein NS22, which is translated from a non-AUG start site, was identified in the S7 segment. This study has provided the complete genome sequence of a novel isolated aquareovirus from marine fish. Amino acids comparison and phylogenetic analysis suggested that SMReV was a new aquareovirus in the species group Aquareovirus A. Phylogenetic analysis among aquareoviruses revealed that VP7 could be used as a reference to divide the aquareovirus from hosts in fresh water or marine. In addition, a FAST protein with a non-AUG start site was identified, which partially contributed to the cytopathic effect caused by the virus infection. These results provide new insights into the virus-host and virus-environment interactions.
    BMC Genomics 06/2011; 12(1):323. DOI:10.1186/1471-2164-12-323 · 3.99 Impact Factor
Show more