Diagnostic accuracy of confocal laser endomicroscopy in diagnosing dysplasia in patients affected by long-standing ulcerative colitis.

Antonio Rispo, Fabiana Castiglione, Gastroenterology, University "Federico II" of Naples, 80131 Naples, Italy.
World journal of gastrointestinal endoscopy 09/2012; 4(9):414-20. DOI: 10.4253/wjge.v4.i9.414
Source: PubMed

ABSTRACT To evaluate the diagnostic accuracy of confocal laser endomicroscopy (CLE) for the detection of dysplasia in long-standing ulcerative colitis (UC).
We prospectively performed a surveillance colonoscopy in 51 patients affected by long-standing UC. Also, in the presence of macroscopic areas with suspected dysplasia, both targeted contrasted indigo carmine endoscopic assessment and probe-based CLE were performed. Colic mucosal biopsies and histology, utilised as the gold standard, were assessed randomly and on visible lesions, in accordance with current guidelines.
Fourteen of the 51 patients (27%) showed macroscopic mucosal alterations with the suspected presence of dysplasia, needing chromoendoscopic and CLE evaluation. In 5 macroscopically suspected cases, the presence of dysplasia was confirmed by histology (3 flat dysplasia; 2 DALMs). No dysplasia/cancer was found on any of the outstanding random biopsies. The diagnostic accuracy of CLE for the detection of dysplasia compared to standard histology was sensitivity 100%, specificity 90%, positive predictive value 83% and negative predictive value 100%.
CLE is an accurate tool for the detection of dysplasia in long-standing UC and shows optimal values of sensitivity and negative predictivity. The scheduled combined application of chromoendoscopy and CLE could maximize the endoscopic diagnostic accuracy for diagnosis of dysplasia in UC patients, thus limiting the need for biopsies.

Download full-text


Available from: Maria Siano, Jun 23, 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Breast neoplasms include different histopathological entities, varying from benign tumors to highly aggressive cancers. Despite the key role of imaging, traditional histology is still required for a definitive diagnosis. Confocal Laser Endomicroscopy (CLE) is a new technique, which enables to obtain histopathological images in vivo, currently used in the diagnosis of gastrointestinal diseases. This is a single-center pilot feasibility study; the main aim is to describe the basic morphological patterns of Confocal Laser Endomicroscopy in normal breast tissue besides benign and malignant lesions. Methods Thirteen female patients (mean age 52.7, range from 22 to 86) who underwent surgical resection for a palpable breast nodule were enrolled. CLE was performed soon after resection with the Cellvizio® Endomicroscopy System (Mauna Kea Technologies, Paris, France), by using a Coloflex UHD-type probe; intravenous fluorescein was used as contrast-enhancing agent. The surgical specimen was cut along the main axis; dynamic images were obtained and recorded using a hand-held probe directly applied both to the internal part of the lesion and to several areas of surrounding normal tissue. Each specimen was then sent for definitive histologic examination. Results Histopathology revealed a benign lesion in six patients (46%), while a breast cancer was diagnosed in seven women (54%). Confocal laser endomicroscopy showed some peculiar morphological patterns. Normal breast tissue was characterized by a honeycomb appearance with regular, dark, round or hexagonal glandular lobules on a bright stroma background; tubular structures, representing ducts or blood vessels, were also visible in some frames. Benign lesions were characterized by a well-demarcated “slit-like” structure or by lobular structures in abundant bright stroma. Finally, breast cancer was characterized by a complete architectural subversion: ductal carcinoma was characterized by ill-defined structures, with dark borders and irregular ductal shape, formingribbons, tubules or nests; mucinous carcinoma showed smaller cells organized in clusters, floating in an amorphous extracellular matrix. Conclusions This is the first pilot study to investigate the potential role of confocal laser imaging as a diagnostic tool in breast diseases. Further studies are required to validate these results and establish the clinical impact of this technique.
    BMC Cancer 04/2015; 15(1). DOI:10.1186/s12885-015-1245-6 · 3.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endoscopy plays a crucial role in the management of inflammatory bowel disease (IBD). Advances imaging techniques allow visualization of mucosal details, tissue characteristics and cellular alteration. In particular chromoendoscopy, magnification endoscopy, confocal laser endomicroscopy and endocytoscopy seem to have the possibility to radically modify the approach to surveillance and decision making. Dye-based chromoendoscopy (DBC) and magnification chromoendoscopy improve detection of dysplasia, and evaluation of inflammatory activity and extension of ulcerative colitis and are thus considered the standard of care. Dye-less chromoendoscopy could probably replace conventional DBC for surveillance. Narrow band imaging and i-scan have shown to improve activity and extent assessment in comparison to white-light endoscopy. Confocal laser endomicroscopy (CLE) can detect more dysplastic lesions in surveillance colonoscopy and predict neoplastic and inflammatory changes with high accuracy compared to histology. This technology is best used in conjunction with chromoendoscopy, narrow-band imaging, or autofluorescence because of its minute scanning area. This combination is useful for appropriate tissue classification of mucosal lesions already detected by standard or optically enhanced endoscopy. The best combination for IBD surveillance appear to be chromoendoscopy for identification of areas of suspicion, with further examination with CLE to detect intraepithelial neoplasia. However cost, availability, and experience are still an issue.
    03/2015; 7(3):230-6. DOI:10.4253/wjge.v7.i3.230
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Confocal laser endomicroscopy (CLE) can provide in vivo subcellular resolution images of esophageal lesions. However, the learning curve in interpreting CLE images of precancerous or early-stage esophageal squamous cancer is unknown. The goal of this study is to evaluate the diagnostic accuracy and inter-observer agreement for differentiating esophageal lesions in CLE images among experienced and inexperienced observers and to assess the learning curve. Method After a short training, 8 experienced and 14 inexperienced endoscopists evaluated in sequence 4 sets of high-quality CLE images. Their diagnoses were corrected and discussed after each set. For each image, the diagnostic results, confidence in diagnosis, quality and time to evaluate were recorded. Results Overall, diagnostic accuracy was greater for the second, third, fourth set of images as compared with the initial set (odds ratio [OR] 2.01, 95% CI 1.22–3.31; 7.95, 3.74–16.87; and 6.45, 3.14–13.27), respectively, with no difference between the third and fourth sets in accuracy (p = 0.67). Previous experience affected the diagnostic accuracy only in the first set of images (OR 3.70, 1.87–7.29, p<0.001). Inter-observer agreement was higher for experienced than inexperienced endoscopists (0.732 vs. 0.666, p<0.01) Conclusion CLE is a promising technology that can be quickly learned after a short training period; previous experience is associated with diagnostic accuracy only at the initial stage of learning.
    PLoS ONE 06/2014; 9(6):e99089. DOI:10.1371/journal.pone.0099089 · 3.53 Impact Factor