Bone Density in Peripubertal Boys with Autism Spectrum Disorders

Lurie Center for Autism, Massachusetts General Hospital and Harvard Medical School, One Maguire Road, Lexington, MA, 02421, USA, .
Journal of Autism and Developmental Disorders (Impact Factor: 3.06). 11/2012; In press(7). DOI: 10.1007/s10803-012-1709-3
Source: PubMed


We determined whether bone mineral density (BMD) is lower in boys with autism spectrum disorders (ASD) than controls, and also assessed variables that may affect BMD in ASD. BMD was measured using dual energy X-ray absorptiometry (DXA) in 18 boys with ASD and 19 controls 8-14 years old. Boys with ASD had lower BMD Z-scores at the spine, hip and femoral neck, and differences at the hip and femoral neck persisted after controlling for maturity and BMI. Vitamin D intake from food and in serum were lower in ASD subjects, as was exercise activity. We conclude that BMD is lower in peripubertal boys with ASD and may be associated with impaired vitamin D status and lower exercise activity.

13 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dietary intervention as a tool for maintaining and improving physical health and wellbeing is a widely researched and discussed topic. Speculation that diet may similarly affect mental health and wellbeing particularly in cases of psychiatric and behavioral symptomatology opens up various avenues for potentially improving quality of life. We examine evidence suggestive that a gluten-free (GF), casein-free (CF), or gluten- and casein-free diet (GFCF) can ameliorate core and peripheral symptoms and improve developmental outcome in some cases of autism spectrum conditions. Although not wholly affirmative, the majority of published studies indicate statistically significant positive changes to symptom presentation following dietary intervention. In particular, changes to areas of communication, attention, and hyperactivity are detailed, despite the presence of various methodological shortcomings. Specific characteristics of best- and non-responders to intervention have not been fully elucidated; neither has the precise mode of action for any universal effect outside of known individual cases of food-related co-morbidity. With the publication of controlled medium- and long-term group studies of a gluten- and casein-free diet alongside more consolidated biological findings potentially linked to intervention, the appearance of a possible diet-related autism phenotype seems to be emerging supportive of a positive dietary effect in some cases. Further debate on whether such dietary intervention should form part of best practice guidelines for autism spectrum conditions (ASCs) and onward representative of an autism dietary-sensitive enteropathy is warranted.
    Frontiers in Human Neuroscience 12/2012; 6:344. DOI:10.3389/fnhum.2012.00344 · 2.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The diagnosis of autism spectrum disorder (ASD) during early childhood has a profound effect not only on young children but on their families. Aside from the physical and behavioural issues that need to be dealt with, there are significant emotional and financial costs associated with living with someone diagnosed with ASD. Understanding how autism occurs will assist in preparing families to deal with ASD, if not preventing or lessening its occurrence. Serotonin plays a vital role in the development of the brain during the prenatal and postnatal periods, yet very little is known about the serotonergic systems that affect children with ASD. This review seeks to provide an understanding of the biochemistry and physiological actions of serotonin and its termination of action through the serotonin reuptake transporter (SERT). Epidemiological studies investigating prenatal conditions that can increase the risk of ASD describe a number of factors which elevate plasma cortisol levels causing such symptoms during pregnancy such as hypertension, gestational diabetes and depression. Because cortisol plays an important role in driving dysregulation of serotonergic signalling through elevating SERT production in the developing brain, it is also necessary to investigate the physiological functions of cortisol, its action during gestation and metabolic syndromes.
    Molecular Autism 10/2013; 4(1):37. DOI:10.1186/2040-2392-4-37 · 5.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Serotonin and vitamin D have been proposed to play a role in autism; however, no causal mechanism has been established. Here, we present evidence that vitamin D hormone (calcitriol) activates the transcription of the serotonin-synthesizing gene tryptophan hydroxylase 2 (TPH2) in the brain at a vitamin D response element (VDRE) and represses the transcription of TPH1 in tissues outside the blood-brain barrier at a distinct VDRE. The proposed mechanism explains 4 major characteristics associated with autism: the low concentrations of serotonin in the brain and its elevated concentrations in tissues outside the blood-brain barrier; the low concentrations of the vitamin D hormone precursor 25-hydroxyvitamin D [25(OH)D3]; the high male prevalence of autism; and the presence of maternal antibodies against fetal brain tissue. Two peptide hormones, oxytocin and vasopressin, are also associated with autism and genes encoding the oxytocin-neurophysin I preproprotein, the oxytocin receptor, and the arginine vasopressin receptor contain VDREs for activation. Supplementation with vitamin D and tryptophan is a practical and affordable solution to help prevent autism and possibly ameliorate some symptoms of the disorder.-Patrick, R. P., Ames, B. N. Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism.
    The FASEB Journal 02/2014; 28(6). DOI:10.1096/fj.13-246546 · 5.04 Impact Factor
Show more