Biochemical characterization of human and murine isoforms of UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE).

Institute of Biochemistry and Molecular Biology, Charité-University Medicine Berlin, Campus Benjamin Franklin, Arnimallee 22, 14195, Berlin-Dahlem, Germany.
Glycoconjugate Journal (Impact Factor: 1.88). 10/2008; 26(4):415-22. DOI: 10.1007/s10719-008-9189-6
Source: PubMed

ABSTRACT The bifunctional enzyme UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE) is the key enzyme for the biosynthesis of sialic acids, terminal components of glycoconjugates associated with a variety of physiological and pathological processes. Different protein isoforms of human and mouse GNE, deriving from splice variants, were predicted recently: GNE1 represents the GNE protein described in several studies before, GNE2 and GNE3 are proteins with extended and deleted N-termini, respectively. hGNE2, recombinantly expressed in insect and mamalian cells, displayed selective reduction of UDP-GlcNAc 2-epimerase activity by the loss of its tetrameric state, which is essential for full enzyme activity. hGNE3, which had to be expressed in Escherichia coli, only possessed kinase activity, whereas mGNE1 and mGNE2 showed no significant differences. Our data therefore suggest a role of GNE1 in basic supply of cells with sialic acids, whereas GNE2 and GNE3 may have a function in fine-tuning of the sialic acid pathway.

  • [Show abstract] [Hide abstract]
    ABSTRACT: GNE myopathy is a recessive adult onset, slowly progressive distal and proximal myopathy, caused by mutations in the GNE gene. The most frequent mutation in GNE myopathy patients is the Middle Eastern founder mutation M712T. We have generated Gne ( M712T/M712T ) knockin mice. A high mortality rate in the first generation due to renal failure was recorded (as previously described). However, the following Gne ( M712T/M712T ) offspring generations could be classified into 3 phenotypic categories: severe, mild and without apparent phenotype. By further crossing between mice with no apparent phenotype, we were able to establish a colony of Gne ( M712T/M712T ) knockin mice with a high- and long-term survival rate, lacking any renal phenotype. These mice did not present any muscle phenotype (clinical or pathological) for up to 18 months. No correlation was found between the expression of any of the two mRNA Gne isoforms in muscle and the mouse genotype or phenotype. However, the expression of isoform 2 mRNA was significantly higher in the kidney of Gne ( M712T/M712T ) kidney affected mice compared with control. In contrast, the expression of UPR markers Bip, Chop and of the spliced form of XBP1, was upregulated in muscle of Gne ( M712T/M712T ) mice compared with controls, but was unchanged in the affected kidney. Thus, Gne defects can affect both muscle and kidney in mouse, but probably through different mechanisms.
    Neuromolecular medicine 12/2012; · 5.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. Non-allosteric GNE gene mutations cause the muscular disorder GNE myopathy (also known as hereditary inclusion body myopathy), whose exact pathology remains unknown. Increased knowledge of GNE regulation, including isoform regulation, may help elucidate the pathology of GNE myopathy. While eight mRNA transcripts encoding human GNE isoforms are described, we only identified two mouse Gne mRNA transcripts, encoding mGne1 and mGne2, homologous to human hGNE1 and hGNE2. Orthologs of the other human isoforms were not identified in mice. mGne1 appeared as the ubiquitously expressed, major mouse isoform. The mGne2 encoding transcript is differentially expressed and may act as a tissue-specific regulator of sialylation. mGne2 expression appeared significantly increased the first 2 days of life, possibly reflecting the high sialic acid demand during this period. Tissues of the knock-in Gne p.M712T mouse model had similar mGne transcript expression levels among genotypes, indicating no effect of the mutation on mRNA expression. However, upon treatment of these mice with N-acetylmannosamine (ManNAc, a Gne substrate, sialic acid precursor, and proposed therapy for GNE myopathy), Gne transcript expression, in particular mGne2, increased significantly, likely resulting in increased Gne enzymatic activities. This dual effect of ManNAc supplementation (increased flux through the sialic acid pathway and increased Gne activity) needs to be considered when treating GNE myopathy patients with ManNAc. In addition, the existence and expression of GNE isoforms needs consideration when designing other therapeutic strategies for GNE myopathy.
    Glycoconjugate Journal 12/2012; · 1.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GNE myopathy is characterized by early-adult-onset distal myopathy sparing quadriceps caused by mutations in the GNE gene encoding UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, an enzyme in the sialic-acid synthesis pathway. A 27-year-old Korean woman presented a rapid deterioration in strength of the distal lower limbs during her first pregnancy. She was diagnosed with GNE myopathy and carrying the compound heterozygous mutations of the GNE gene (D208N/M29T). This is a representative case implying that an increased requirement of sialic acid during pregnancy might trigger a clinical worsening of GNE myopathy.
    Journal of Clinical Neurology 10/2013; 9(4):280-282. · 1.89 Impact Factor