X-linked protocadherin 19 mutations cause female-limited epilepsy and cognitive impairment

Department of Genetic Medicine, Level 9 Rieger Building, Women's and Children's Hospital, 72 King William Road, North Adelaide, South Australia 5006, Australia.
Nature Genetics (Impact Factor: 29.65). 05/2008; 40(6):776-781. DOI: 10.1038/ng.149

ABSTRACT Epilepsy and mental retardation limited to females (EFMR) is a disorder with an X-linked mode of inheritance and an unusual expression pattern. Disorders arising from mutations on the X chromosome are typically characterized by affected males and unaffected carrier females. In contrast, EFMR spares transmitting males and affects only carrier females. Aided by systematic resequencing of 737 X chromosome genes, we identified different protocadherin 19 (PCDH19) gene mutations in seven families with EFMR. Five mutations resulted in the introduction of a premature termination codon. Study of two of these demonstrated nonsense-mediated decay of PCDH19 mRNA. The two missense mutations were predicted to affect adhesiveness of PCDH19 through impaired calcium binding. PCDH19 is expressed in developing brains of human and mouse and is the first member of the cadherin superfamily to be directly implicated in epilepsy or mental retardation.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epileptic encephalopathies represent a group of devastating epileptic disorders that occur early in life and are often characterized by pharmaco-resistant epilepsy, persistent severe electroencephalographic abnormalities, and cognitive dysfunction or decline. Next generation sequencing technologies have increased the speed of gene discovery tremendously. Whereas ion channel genes were long considered to be the only significant group of genes implicated in the genetic epilepsies, a growing number of non-ion-channel genes are now being identified. As a subgroup of the genetically mediated epilepsies, epileptic encephalopathies are complex and heterogeneous disorders, making diagnosis and treatment decisions difficult. Recent exome sequencing data suggest that mutations causing epileptic encephalopathies are often sporadic, typically resulting from de novo dominant mutations in a single autosomal gene, although inherited autosomal recessive and X-linked forms also exist.In this review we provide a summary of the key features of several early- and mid-childhood onset epileptic encephalopathies including Ohtahara syndrome, Dravet syndrome, Infantile spasms and Lennox Gastaut syndrome. We review the recent next generation sequencing findings that may impact treatment choices. We also describe the use of conventional and newer anti-epileptic and hormonal medications in the various syndromes based on their genetic profile. At a biological level, developments in cellular reprogramming and genome editing represent a new direction in modeling these pediatric epilepsies and could be used in the development of novel and repurposed therapies.
    Journal of the American Society for Experimental NeuroTherapeutics 09/2014; 11(4). DOI:10.1007/s13311-014-0301-2 · 3.88 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the PCDH19 gene are now recognized to cause epilepsy in females and are claiming increasing interest in the scientific world. Clinical features and seizure semiology have been described as heterogeneous. Intellectual disability might be present, ranging from mild to severe; behavioral and psychiatric problems are a common feature of the disorder, including aggressiveness, depressed mood, and psychotic traits. The purpose of our study was to describe the cognitive development in 11 girls with a de novo mutation in PCDH19 and early-onset epilepsy. Six patients had average mental development or mild intellectual disability regardless of persistence of seizures in clusters. Five patients presented moderate or severe intellectual disability and autistic features. In younger patients, we found that despite an average developmental quotient, they all presented a delay of expressive language acquisition and lower scores at follow-up testing completed at older ages, underlining that subtle dysfunctions might be present. Larger cohort and long-term follow-up might be useful in defining cognitive features and in improving the care of patients with PCDH19. Copyright © 2014 Elsevier Inc. All rights reserved.
    Epilepsy & Behavior 12/2014; 42C:36-40. DOI:10.1016/j.yebeh.2014.10.019 · 2.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The PCDH19 gene encodes protocadherin-19, a transmembrane protein with six cadherin (EC) domains, containing adhesive interfaces likely to be involved in neuronal connection. Over a hundred mostly private mutations have been identified in girls with epilepsy, with or without intellectual disability (ID). Furthermore, transmitting hemizygous males are devoid of seizures or ID, making it difficult to establish the pathogenic nature of newly identified variants. Here, we describe an integrated approach to evaluate the pathogenicity of four novel PCDH19 mutations. Segregation analysis has been complemented with an in silico analysis of mutation effects at the protein level. Using sequence information, we compared different computational prediction methods. We used homology modeling to build structural models of two PCDH19 EC-domains, and compared wild-type and mutant models to identify differences in residue interactions or biochemical properties of the model surfaces. Our analysis suggests different molecular effects of the novel mutations in exerting their pathogenic role. Two of them interfere with or alter functional residues predicted to mediate ligand or protein binding, one alters the EC-domain folding stability; the frame-shift mutation produces a truncated protein lacking the intracellular domain. Interestingly, the girl carrying the putative loss of function mutation presents the most severe phenotype.
    Annals of Human Genetics 09/2014; 78(6). DOI:10.1111/ahg.12082 · 1.93 Impact Factor