Analysis of 10 independent samples provides evidence for association between schizophrenia and a SNP flanking fibroblast growth factor receptor 2

Department of Psychological Medicine, School of Medicine, Cardiff University, Cardiff, UK.
Molecular Psychiatry (Impact Factor: 14.5). 09/2008; 14(1):30-6. DOI: 10.1038/mp.2008.108
Source: PubMed


We and others have previously reported linkage to schizophrenia on chromosome 10q25-q26 but, to date, a susceptibility gene in the region has not been identified. We examined data from 3606 single-nucleotide polymorphisms (SNPs) mapping to 10q25-q26 that had been typed in a genome-wide association study (GWAS) of schizophrenia (479 UK cases/2937 controls). SNPs with P<0.01 (n=40) were genotyped in an additional 163 UK cases and those markers that remained nominally significant at P<0.01 (n=22) were genotyped in replication samples from Ireland, Germany and Bulgaria consisting of a total of 1664 cases with schizophrenia and 3541 controls. Only one SNP, rs17101921, was nominally significant after meta-analyses across the replication samples and this was genotyped in an additional six samples from the United States/Australia, Germany, China, Japan, Israel and Sweden (n=5142 cases/6561 controls). Across all replication samples, the allele at rs17101921 that was associated in the GWAS showed evidence for association independent of the original data (OR 1.17 (95% CI 1.06-1.29), P=0.0009). The SNP maps 85 kb from the nearest gene encoding fibroblast growth factor receptor 2 (FGFR2) making this a potential susceptibility gene for schizophrenia.

Download full-text


Available from: Michael Gill,
  • Source
    • "Moreover, since this SNP is closer to another gene, HABP2, we should not ignore the possibility that our 10q24–q26 region harbors more than one schizophrenia susceptibility gene, acting independently: TCF7L2 and HABP2. Moreover, a third susceptibility gene for schizophrenia, FGFR2, was found in this genomic area by O'Donovan et al (2009) [25]. HABP2 (hyaluronan binding protein 2), named also FSAP (serine protease FVII activating protein) is an extracellular serine protease that binds hyaluronic acid [26]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Many reports in different populations have demonstrated linkage of the 10q24-q26 region to schizophrenia, thus encouraging further analysis of this locus for detection of specific schizophrenia genes. Our group previously reported linkage of the 10q24-q26 region to schizophrenia in a unique, homogeneous sample of Arab-Israeli families with multiple schizophrenia-affected individuals, under a dominant model of inheritance. To further explore this candidate region and identify specific susceptibility variants within it, we performed re-analysis of the 10q24-26 genotype data, taken from our previous genome-wide association study (GWAS) (Alkelai et al, 2011). We analyzed 2089 SNPs in an extended sample of 57 Arab Israeli families (189 genotyped individuals), under the dominant model of inheritance, which best fits this locus according to previously performed MOD score analysis. We found significant association with schizophrenia of the TCF7L2 gene intronic SNP, rs12573128, (p = 7.01×10⁻⁶) and of the nearby intergenic SNP, rs1033772, (p = 6.59×10⁻⁶) which is positioned between TCF7L2 and HABP2. TCF7L2 is one of the best confirmed susceptibility genes for type 2 diabetes (T2D) among different ethnic groups, has a role in pancreatic beta cell function and may contribute to the comorbidity of schizophrenia and T2D. These preliminary results independently support previous findings regarding a possible role of TCF7L2 in susceptibility to schizophrenia, and strengthen the importance of integrating linkage analysis models of inheritance while performing association analyses in regions of interest. Further validation studies in additional populations are required.
    PLoS ONE 01/2012; 7(1):e29228. DOI:10.1371/journal.pone.0029228 · 3.23 Impact Factor
  • Source
    • "Certainly, evidence for the participation of syndecan-2 and syndecan-3 in synapse formation [14,90-92], as well as recent work on the Drosophila nervous system [89,93-95], suggests that HSPGs may play a variety of as yet unappreciated roles in basic neurophysiology. To this end, it is intriguing that recent genome-wide association studies in man have identified both GPC1 and FGFR2 (which encodes a major FGF receptor of the brain) as members of a small handful of genetic loci that correlate with risk of schizophrenia [96,97], a psychiatric disorder also associated with a small, but significant, reduction in brain volume [98,99]. Clearly, a detailed behavioral and neurophysiological examination of the Gpc1 mutant mouse seems warranted in the future. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell surface heparan sulfate proteoglycans (HSPGs) act as co-receptors for multiple families of growth factors that regulate animal cell proliferation, differentiation and patterning. Elimination of heparan sulfate during brain development is known to produce severe structural abnormalities. Here we investigate the developmental role played by one particular HSPG, glypican-1 (Gpc1), which is especially abundant on neuronal cell membranes, and is the major HSPG of the adult rodent brain. Mice with a null mutation in Gpc1 were generated and found to be viable and fertile. The major phenotype associated with Gpc1 loss is a highly significant reduction in brain size, with only subtle effects on brain patterning (confined to the anterior cerebellum). The brain size difference emerges very early during neurogenesis (between embryonic days 8.5 and 9.5), and remains roughly constant throughout development and adulthood. By examining markers of different signaling pathways, and the differentiation behaviors of cells in the early embryonic brain, we infer that Gpc1(-/-) phenotypes most likely result from a transient reduction in fibroblast growth factor (FGF) signaling. Through the analysis of compound mutants, we provide strong evidence that Fgf17 is the FGF family member through which Gpc1 controls brain size. These data add to a growing literature that implicates the glypican family of HSPGs in organ size control. They also argue that, among heparan sulfate-dependent signaling molecules, FGFs are disproportionately sensitive to loss of HSPGs. Finally, because heterozygous Gpc1 mutant mice were found to have brain sizes half-way between homozygous and wild type, the data imply that endogenous HSPG levels quantitatively control growth factor signaling, a finding that is both novel and relevant to the general question of how the activities of co-receptors are exploited during development.
    Neural Development 10/2009; 4(1):33. DOI:10.1186/1749-8104-4-33 · 3.45 Impact Factor

Show more