Article

Rational design and in vitro and in vivo delivery of Dicer substrate siRNA

The Biotechnology Centre of Oslo, Gaustadalleen 21, 0349 Oslo, Norway.
Nature Protocols (Impact Factor: 7.78). 06/2006; 1(2):508-517. DOI: 10.1038/nprot.2006.72
Source: PubMed

ABSTRACT RNA interference is a powerful tool for target-specific knockdown of gene expression. The triggers for this process are duplex small interfering RNAs (siRNAs) of 21–25 nt with 2-bp 3' overhangs produced in cells by the RNase III family member Dicer. We have observed that short RNAs that are long enough to serve as Dicer substrates (D-siRNA) can often evoke more potent RNA interference than the corresponding 21-nt siRNAs; this is probably a consequence of the physical handoff of the Dicer-produced siRNAs to the RNA-induced silencing complex. Here we describe the design parameters for D-siRNAs and a protocol for in vitro and in vivo intraperitoneal delivery of D-siRNAs and siRNAs to macrophages. siRNA delivery and transfection and analysis of macrophages in vivo can be accomplished within 36 h.

0 Followers
 · 
118 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Virulent biotypes of feline coronavirus (FCoV), commonly referred to as infectious peritonitis virus (FIPV), can result in the development of feline infectious peritonitis (FIP), a typically fatal immune mediated disease for which there is currently no effective antiviral treatment. We previously reported the successful in vitro inhibition of FIPV replication by synthetic siRNA mediated RNA interference (RNAi) in an immortalised cell line (McDonagh et al., 2011). A major challenge facing the development of any antiviral strategy is that of resistance, which is particularly acute for RNAi based therapeutics due to the exquisite sequence specificity of the targeting mechanism. The development of resistance during treatment can be minimised using combination therapy to raise the genetic barrier or using highly potent compounds which result in a more rapid and pronounced reduction in the viral replication rate, thereby reducing the formation of mutant, and potentially resistant viruses. This study investigated the efficacy of combination siRNA therapy and its ability to delay or prevent viral escape. Virus serially passaged through cells treated with a single or dual siRNAs rapidly acquired resistance, with mutations identified in the siRNA target sites. Combination therapy with three siRNA prevented viral escape over the course of five passages. To identify more potent silencing molecules we also compared the efficacy, in terms of potency and duration of action, of canonical versus Dicer-substrate siRNAs for two previously identified effective viral motifs. Dicer-substrate siRNAs showed equivalent or better potency than canonical siRNAs for the target sites investigated, and may be a more appropriate molecule for in vivo use. Combined, these data inform the potential therapeutic application of antiviral RNAi against FIPV.
    Veterinary Microbiology 12/2014; 176(1-2). DOI:10.1016/j.vetmic.2014.12.009 · 2.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Because adhesion of leukocytes to endothelial cells is the first step of vascular-neuronal inflammation, inhibition of adhesion and recruitment of leukocytes to vascular endothelial cells will have a beneficial effect on neuroinflammatory diseases. In this study, we used the pRNA of bacteriophage phi29 DNA packaging motor to construct a novel RNA nanoparticle for specific targeting to transferrin receptor (TfR) on the murine brain-derived endothelial cells (bEND5) to deliver ICAM-1 siRNA. This RNA nanoparticle (FRS-NPs) contained a FB4 aptamer targeting to TfR and a siRNA moiety for silencing the intercellular adhesion molecule-1 (ICAM-1). Our data indicated that this RNA nanoparticle was delivered into murine brain-derived endothelial cells. Furthermore, the siRNA was released from the FRS-NPs in the cells and knocked down ICAM-1 expression in the TNF-α-stimulated cells and in the cells under oxygen-glucose deprivation/reoxygenation (OGD/R) condition. The functional end points of the study indicated that FRS-NPs significantly inhibited monocyte adhesion to the bEND5 cells induced by TNF-α and OGD/R. In conclusion, our approach using RNA nanotechnology for siRNA delivery could be potentially applied for inhibition of inflammation in ischemic stroke and other neuroinflammatory diseases, or diseases affecting endothelium of vasculature.
    11/2014; 3:e209. DOI:10.1038/mtna.2014.60
  • [Show abstract] [Hide abstract]
    ABSTRACT: Secretion of tumor necrosis factor-α (TNF-α) by macrophages plays a predominant role in the development and progression of various inflammatory diseases. In the current contribution, multifunctional nanoparticles (NPs) containing TNF-α siRNA targeting macrophages via oral administration were developed to knockdown TNF-α expression against acute hepatic injury in rats. Mannose-modified trimethyl chitosan-cysteine (MTC) NPs were prepared by self-assembly method (sa-MTC NPs), ionic gelation and siRNA entrapment method (en-MTC NPs), and ionic gelation and siRNA adsorption method (ad-MTC NPs). Among them, en-MTC NPs demonstrated the best stability against ionic challenges with desired siRNA integrity against nucleases. By targeting normal enterocytes and M cells that expressed mannose receptors, en-MTC NPs notably promoted intestinal absorption of siRNA in rats. They further facilitated siRNA internalization by rat peritoneal exudate cells (PECs) via lipid-raft involved endocytosis and macropinocytosis, thus inducing effective in vitro TNF-α knockdown. Orally delivered en-MTC NPs at a low siRNA dose of 50 μg/kg inhibited systemic TNF-α production and decreased TNF-α mRNA levels in macrophage-enriched liver, spleen, and lung tissues, which consequently protected rats from acute hepatic injury. Therefore, the en-MTC NPs would provide an effective approach to orally deliver TNF-α siRNA for the anti-inflammatory therapy.
    Acta Biomaterialia 02/2015; 17. DOI:10.1016/j.actbio.2015.01.041 · 5.68 Impact Factor

Full-text (2 Sources)

Download
70 Downloads
Available from
Jun 3, 2014